MAT401 - 2008 Spring - Term Test Solutions

Problem 1: First of all, since multiplication (mod 10) is commutative, our ring is commutative. This is a prerequisite for the existence of a unity. Now to find out whether the ring has a unity, we simply construct the multiplication table with all possible pairs of elements. There are 5 + 4 + 3 + 2 + 1 = 15 such independent pairs.

It is clear from this table that $6x = x \pmod{10} \forall x \in \{0, 2, 4, 6, 8\}$ so 6 is the unity of the ring. Also we see that no other element satisfies the requirements of being a unity, which is consistent with the property that a unity, if it exists in a ring, is unique.

Problem 2: refer to Chapter 13 of the textbook, in particular the definitions on p. 248 and 250, as well as Theorem 13.2

Problem 3: refer to Theorem 14.4 in the textbook and Theorem 2 as presented in the 23 Jan lecture

Problem 4: Suppose we have a ring homomorphism $\phi : \mathbb{Z}_6 \to \mathbb{Z}_{10}$. Let $\phi(1) = t \in \mathbb{Z}_{10}$. By the fact that ϕ preserves the operation of addition, for any $n \in \mathbb{Z}_6$ we have

$$\phi(n) = \phi(n1) = n \phi(1) = nt \pmod{10}$$

which completely defines the action of the homomorphism on all elements of \mathbb{Z}_6 . We can narrow down the possibilities for t because

$$\phi(1) = t = \phi(1^2) = \phi(1)\phi(1) = t^2$$

so t must satisfy $t^2 = t \pmod{10}$ meaning $t \in \{0, 1, 5, 6\}$. Finally we must impose the requirement that for any $a, b \in \mathbb{Z}_6, \phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. Take, for example, $a + b = 6q_1 + r_1$.

$$\phi(a+b) = \phi(r_1) = t[(a+b) - 6q_1] = ta + tb - 6q_1t = \phi(a) + \phi(b) - 6q_1t$$

Likewise with $ab = 6q_2 + r_2$

$$\phi(ab) = \phi(r_2)$$

$$= t[(ab) - 6q_2]$$

$$= tab - 6q_2t$$

$$= t^2ab - 6q_2t$$

$$= \phi(a)\phi(b) - 6q_2t$$

so if we require $\phi(a + b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$, where the equalities are $(mod \ 10)$, then we must have $6q_1t = 6q_2t = 0 \pmod{10} \forall q_1$, q_2 . This implies $10 \mid 6t$ which further restricts our choices to $t \in \{0, 5\}$

Problem 5: Let us define

$$g(x) \equiv f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$$

and observe that

$$g(a) = f(a) - f(a) = 0$$

$$g(b) = f(b) - [f(b) - f(a) + f(a)] = 0$$

Now because g(a) = 0 we can write

$$g(x) = (x-a)q_1(x)$$

In addition we have

$$g(b) = (b-a)q_1(b) = 0$$

and since $a \neq b$, this means that $q_1(b) = 0$ because F[x] is a domain. Therefore we can write

$$q_1(x) = (x-b)q_2(x)$$

$$g(x) = (x-a)(x-b)q_2(x)$$

and hence f(x) can be written as

$$f(x) = g(x) + \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$

= $(x - a)(x - b)q_2(x) + \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$

Finally, we know when $f \in F[x]$ is divided by (x - a)(x - b) the expression

$$f(x) = (x - a)(x - b)q(x) + r(x)$$

is unique, where r(x) is the remainder and deg[r(x)] < deg[(x-a)(x-b)] = 2. Therefore it is clear by inspection that the remainder is

$$r(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \blacksquare$$

Problem 6: Eisenstein's criterion says that for $f \in \mathbb{Z}[x]$ where

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$$

if \exists a prime p such that $p \mid a_n$, $p \mid a_j$ for $j \in \{0, 1, 2...n - 1\}$ and $p^2 \nmid a_0$, then f is irreducible over \mathbb{Z} . Since polynomials irreducible over \mathbb{Z} are also irreducible over \mathbb{Q} , f is thus also irreducible over \mathbb{Q} . Now we simply observe that in our case f satisfies Eisenstein's criterion for p = 5, so it is irreducible over $\mathbb{Q} \blacksquare$