
MAT401 - 2008 Spring - Term Test Solutions

Problem 1: First of all, since multiplication (mod 10) is commutative,
our ring is commutative. This is a prerequisite for the existence of a unity.
Now to find out whether the ring has a unity, we simply construct the
multiplication table with all possible pairs of elements. There are 5 + 4 +
3 + 2 + 1 = 15 such independent pairs.

× 0 2 4 6 8
0 0 0 0 0 0
2 0 4 8 2 6
4 0 8 6 4 2
6 0 2 4 6 8
8 0 6 2 8 4

It is clear from this table that 6x = x (mod 10) ∀ x ∈ {0, 2, 4, 6, 8} so 6
is the unity of the ring. Also we see that no other element satisfies the
requirements of being a unity, which is consistent with the property that a
unity, if it exists in a ring, is unique.

Problem 2: refer to Chapter 13 of the textbook, in particular the definitions
on p. 248 and 250, as well as Theorem 13.2

Problem 3: refer to Theorem 14.4 in the textbook and Theorem 2 as
presented in the 23 Jan lecture

Problem 4: Suppose we have a ring homomorphism φ : Z6 → Z10. Let
φ(1) = t ∈ Z10. By the fact that φ preserves the operation of addition, for
any n ∈ Z6 we have

φ(n) = φ(n1) = n φ(1) = nt (mod 10)

which completely defines the action of the homomorphism on all elements
of Z6. We can narrow down the possibilities for t because

φ(1) = t = φ(12) = φ(1)φ(1) = t2

so t must satisfy t2 = t (mod 10) meaning t ∈ {0, 1, 5, 6}. Finally we must
impose the requirement that for any a, b ∈ Z6, φ(a + b) = φ(a) + φ(b) and
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φ(ab) = φ(a)φ(b). Take, for example, a + b = 6q1 + r1.

φ(a + b) = φ(r1)

= t[(a + b)− 6q1]

= ta + tb− 6q1t

= φ(a) + φ(b)− 6q1t

Likewise with ab = 6q2 + r2

φ(ab) = φ(r2)

= t[(ab)− 6q2]

= tab− 6q2t

= t2ab− 6q2t

= φ(a)φ(b)− 6q2t

so if we require φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b), where the
equalities are (mod 10), then we must have 6q1t = 6q2t = 0 (mod 10) ∀ q1,
q2. This implies 10 | 6t which further restricts our choices to t ∈ {0, 5} �

Problem 5: Let us define

g(x) ≡ f(x)− [
f(b)− f(a)

b− a
(x− a) + f(a)]

and observe that
g(a) = f(a)− f(a) = 0

g(b) = f(b)− [f(b)− f(a) + f(a)] = 0

Now because g(a) = 0 we can write

g(x) = (x− a)q1(x)

In addition we have
g(b) = (b− a)q1(b) = 0

and since a 6= b, this means that q1(b) = 0 because F [x] is a domain.
Therefore we can write

q1(x) = (x− b)q2(x)
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g(x) = (x− a)(x− b)q2(x)

and hence f(x) can be written as

f(x) = g(x) +
f(b)− f(a)

b− a
(x− a) + f(a)

= (x− a)(x− b)q2(x) +
f(b)− f(a)

b− a
(x− a) + f(a)

Finally, we know when f ∈ F [x] is divided by (x− a)(x− b) the expression

f(x) = (x− a)(x− b)q(x) + r(x)

is unique, where r(x) is the remainder and deg[r(x)] < deg[(x−a)(x−b)] = 2.
Therefore it is clear by inspection that the remainder is

r(x) =
f(b)− f(a)

b− a
(x− a) + f(a) �

Problem 6: Eisenstein’s criterion says that for f ∈ Z[x] where

f(x) = anxn + an−1x
n−1 + ...a1x + a0

if ∃ a prime p such that p | an, p | aj for j ∈ {0, 1, 2...n − 1} and p2 - a0,
then f is irreducible over Z. Since polynomials irreducible over Z are also
irreducible over Q, f is thus also irreducible over Q. Now we simply observe
that in our case f satisfies Eisenstein’s criterion for p = 5, so it is irreducible
over Q �
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