Text in purple $=$ things that Prof. Dror Bar Ratan said in class.
NOTE: None of the pictures are mine. Most of them are from Yvonne's notes that are posted on the class webpage.

Thursday, October $23^{\text {rd }}$
Examples of rings
4. $y G$ is a group and R a commutative. The grouping of G with coefficients in R is

$$
R G=\left\{\sum_{i=1}^{n} a_{i} g_{i}: n \geqslant 0 \text { integer, } a_{i} \in R, g_{i} \in G\right\}
$$

$$
\begin{aligned}
& =\left\{a: G \rightarrow R: a(g) \neq 0 \text { for finitely many } g^{\prime} s s .\right. \\
& \left.b_{j} H_{j}\right)=\sum_{i, 1}\left(a_{i} b_{j}\right)\left(q_{i} h_{j}\right) .
\end{aligned}
$$

$\left(\sum a_{i} g_{i}\right)\left(\sum b_{j} H_{j}\right)=\sum_{i, j} \underbrace{a_{i} b_{j}}_{H})(\underbrace{\left(g_{j}\right.}_{G} h_{j})$.

$$
\varepsilon x \cdot \mathbb{Z} \mathbb{Z}=\mathbb{Z}\langle t\rangle=\mathbb{Z}\left\{t^{*}: k \in \mathbb{Z}\right\}
$$

$=\sum_{\text {Polynamualo }} a_{1}{ }^{k}$ finite sum
Monday, October $27^{\text {th }}$

Claim: $M_{\text {nan }}(R[x]) \cong\left(M_{\text {na }}(R)\right)[x]$.
ie. "matrices a entries as polypromialo" " polypromialo is coefficients as macias.

$$
\begin{gathered}
\left\{\left(\begin{array}{ccc}
\sum a_{i k} x^{k} & \cdots & \sum a_{i n} x^{k} \\
\vdots & & \vdots \\
\sum a_{n k} x^{k} & \cdots & \sum a_{n-n} x^{k}
\end{array}\right)\right. \\
\vdots \\
\left\{\left(\sum a_{i j_{k}} x^{k}\right)\right\}
\end{gathered} \quad\left\{\begin{array}{c}
\sum A_{k} x^{k}: A_{k} \in M_{a k n}(R) \\
A_{k}=\left(a_{i j_{k}}\right)
\end{array}\right\}
$$

The map is to map coefficients to coefficients.

Caley-Hamilton Theorem

Wrong Proof \#1:

Diagonalize matrix A, so the entries on the diagonal are the eigenvalues. Since the characteristic polynomials annihilates eigenvalues, it follows.

This is not our proof since we haven't talked about diagonalization, and the ring can be any commutative ring, so we can't diagonalize, and we can't use eigenvalues and eigenvectors.

Wrong Proof \#2:

$$
\text { Wang Proof: } \begin{aligned}
x_{A}(A) & =\operatorname{det}(A I-A) \\
& =\operatorname{det}(0)=0
\end{aligned}
$$

You'ne putting a matrix in a matrix

 The LHS is a matrix and the RHS a scalar 00 the evaluation makes no sense. We aboo didn't use properties of determinant, so this would also be true for the characteristic polynomial defined by trace:Basically, it's saying that if we could just sub in A into aet $(t l-A)$, then we could also sub in A into $\operatorname{tr}(\mathrm{tl}-$ $A)$, and then the calculation doesn't make sense.

Facts needed for the correct proof:

Definition of Adj A:

Aside: $\operatorname{Adj} A=$ "ramspore of mater of minors"
 $$
=\left((-1)^{i+j} \cdot A_{j i}\right)_{i j} \quad A_{j i}=\operatorname{det}
$$
 $$
\left.\operatorname{cim}_{1}^{\min }\right)_{i}^{4}
$$
 column
 now in

Fact about adj A:
$A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det}(A) \cdot I \cdot$ over any commutative R.
You should have seen this proof in previous courses. The proof of this fact is entirely algebraic, and it doesn't use anything except for addition and multiplication. The entries of A adj A can be reinterpreted as the determinants of the original matrix minus the row of I and column of j and replaced by other things. It's entirely algebra, so it's true over any commutative ring R.

Correct proof:

Main idea of correct proof:
Sub in A into this equation:

$$
x_{A}(t) \cdot I==\operatorname{det}(t I-A) I=\left(\sum B_{i} t^{i}\right) \cdot\left(t I-A t^{0}\right)
$$

Full correct proof:

$$
\begin{gather*}
\sim \text { in } M_{m a n}(R[I J) \\
d A(I I-A) \cdot I=\operatorname{adj}(+I-A)(I I-A)=\left(\Sigma B_{1}+i\right)(I I-A) \tag{*}
\end{gather*}
$$

The second equality there is from the isomorphism

$$
M_{n \times n}(R[x]) \cong\left(M_{\text {men }}(R)\right)[x] \text {. }
$$

Recall that the evaluative map is defined by:

$$
\begin{aligned}
& \text { Aside: if } S \text { is } \\
& \text { commutative, } \\
& \text { evu:S[x]>S } \\
& \sum a_{i} x^{i} \mapsto \sum a_{i} u^{i}
\end{aligned}
$$

We would like to use the evaluation map and substitute the matrix A into $\left(^{*}\right)$. But the evaluation map is a ring homomorphism only if the A commute with the Bi's. They're matrixes, so even if the ring itself is commutative, we would still have to prove that the matrices commute.

We'll prove this in the lemma (and R doesn't have to be commutative):

Con all Lemma: All the B_{i} 's commute with A.

$$
\begin{aligned}
\text { Proof of hama: } & (t I-A) \operatorname{adj}(t I-A)=\operatorname{adj}(t I-A)(t I-A) \\
& \Rightarrow(t I-A)\left(\sum_{i} B_{i} t^{i}\right)=\left(\sum B_{i} t^{i}\right)(t I-A) \\
& \Rightarrow A \sum B_{i} t^{i}=\left(\sum B_{i} t^{\top}\right) A \\
& \Rightarrow \forall i A_{i}=B_{i} A .
\end{aligned}
$$

The first line of the proof is because $A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det}(A) \cdot I$.
Using this lemma, we finish the proof of the Caley Hamilton theorem by evaluating $\left(^{*}\right)$ at A:

$$
\begin{aligned}
& \text { Hence under } e v_{A} \\
& x_{A}(t) \cdot I=\left(\sum B \cdot t^{c}\right)\left(t \cdot I-A t^{c}\right) \\
& \Rightarrow x_{A}(A) \cdot I=\left(\sum B ; A^{i}\right)(A I-A I) \\
&=0 .
\end{aligned}
$$

Thursday, November $6^{\text {th }}$

Things covered:

A ring R is Noetherian if every ascending sequence of ideals in it is eventually constant.
Proposition: A PID is Noetherian.
Proof: Consider I = U I_k. There exists n such that $\mathrm{x} \backslash \mathrm{in} \mathrm{I} _\mathrm{n}$, so $\mathrm{I}=\mathrm{I} _\mathrm{n}$.

Theorem: PID => UFD
Weak proof of theorem:

Monday, November $10^{\text {th }}$

Direct Sums

The direct sum of two modules is easy:

```
                                    over the same ung
Direct Sums: given two modules M,N can construct new meodule
    M(HN={(m,n):m\inM,n\inN} s.t.
    (m,*, n})+(\mp@subsup{m}{2}{},\mp@subsup{n}{2}{})=(m,+m,\mp@subsup{m}{2}{},\mp@subsup{n}{1}{}+\mp@subsup{n}{2}{}
    a(m,n)}=(am,an)
```

(Don't mix these operations up with the tensor product! In particular, you can't add coordinates like this in a tensor product).

With an infinite number of modules, there are two definitions:
Definition 1:

is defin determines $M \oplus N$.

Given $\alpha, \beta \exists$! γ making
the diagram commutative $\gamma(m, n)=\gamma((m, 0)+\Delta /(0, n))$ $=\alpha(m)+\beta(n)$

In category theory, this is a coproduct.
This definition works with finitely many coordinates not zero because gamma is defined by summing up the $\mathrm{m}_{\mathrm{i}} \mathrm{i}$'s, so the sum is defined only with finitely many coordinates not zero.

Definition 2:

Homomorphisms of Direct Sums
For finite direct sums, it's obvious that:

GCD/LCM lemma
Claim: If $\operatorname{gcd}(a, b)=1$ then

$$
\frac{R}{\langle a b\rangle} \cong \frac{R}{\langle a\rangle} \oplus \frac{R}{\langle b\rangle}
$$

Proof 1:

Proof 2:
In general,
Claim: (in a PID) if $g=s a+t b$ (guaranteed in a PID) then

$$
\frac{R}{\langle a\rangle} \oplus \frac{R}{\langle b\rangle} \cong \frac{R}{\langle g\rangle} \oplus \frac{R}{\langle l\rangle}
$$

Proof by defining the isomorphisms explicitly using matrices:

Fundamental Theorem for Finitely Generated Modules
Our goal is to prove:

$$
M f \cdot g / P I D R \Rightarrow M \cong R^{*} \oplus R /\left\langle p_{i}^{s_{i}}\right\rangle \text { pi prime } S_{i} \in \mathbb{Z}_{>0}
$$

Main idea of the proof:
Step 1: Show that M is associated with a matrix A. (Roughly speaking, A is associated with the "kernel of M". We will define this specifically.)

Step 2: Show that if we use row operations on the matrix A to get another matrix A^{\prime}, M will also be associated with the matrix A^{\prime}.

Step 3: Show that we can map A to PAQ repeatedly to get to a matrix of this form:

$$
\left(\begin{array}{llllll}
a_{0} & & & & & \\
& a_{2} & & & & \\
& & \ddots & & & \\
& & a_{2} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right)
$$ where P and Q are invertible matrices.

Since M is associated with this matrix

$$
\left(\begin{array}{lllll}
a_{1} & & & & \\
a_{2} & & & & \\
& & & & \\
& & a_{2} & 0 & \\
& & & & \ddots \\
& & & & \\
& & \\
& & \left.R^{K} \propto-\square \ll P_{i}^{s i}\right\rangle .
\end{array}\right.
$$

Details of the proof:
Step 1
Defining the obvious map for a finitely generated module, $R^{\wedge} n \rightarrow M$:

Let X be a generating set for her pi, so that any element in er pi can be written as rx for some r in R and x \in X.

Defining another map from $X->R$:

Explaining this map in details:

We have a map $A: R^{x} \rightarrow R^{\wedge} n$ by defining $A(b)=\sum_{z \in X} b(x) x$, where b is in $R^{\wedge} x$. This sum is finite because $\mathrm{b}(\mathrm{x})$ \eq 0 for finitely many $\mathrm{x}^{\prime} \mathrm{s}$, and $\sum_{x \in X} b(x) x$ is in $\mathrm{R}^{\wedge} \mathrm{n}$ because $\mathrm{b}(\mathrm{x})$ is in R and x is in er pi (which is in $\mathrm{R}^{\wedge} \mathrm{n}$), so $\sum_{x \in X} b(x) x_{x}$ is a sum of elements in $\mathrm{R}^{\wedge} \mathrm{n}$.

Since X is a generating set for ger pi, the image of A is ger pi.
M is isomorphic to $R^{\wedge} n / i m A$:
By the first isomorphism theorem, pi is surjective, so $R^{\wedge} n /$ ger $p i=M$. But jer $p i=i m A$, so we also know that $R^{\wedge} n / i m A=M$.

A can be interpreted as an $n x X$ matrix because A maps $R^{\wedge}|X|$ to $R^{\wedge} n$. An $n x X$ matrix maps something that's $|X|$ dimensional to something that's n dimensional. Furthermore, in each row, there are only
finitely many non-zero entries, since anything in $R^{\wedge} X$ only has finitely many non-zero entries (so if we take $A\left(e_{-} x\right.$) for each x, we would be summing up only finitely many non-zero entries).

Furthermore, very $x \times X$ matrix A defines a finitely generated module

The finitely generated module is just the image of the matrix A (i.e., the column space), then projected by the map pi.

```
Examplea: A=[1) &M=\mp@subsup{R}{}{\prime}/\mathrm{ /m % = %ol}
    A=(a)\leadstoM=\mp@subsup{R}{}{\prime}/ima= =R/\langlea\rangle
    A=(0)}\LongleftrightarrowM+\mp@subsup{R}{}{\prime}/\mathrm{ in }(0)=R/{0}=R
    # }C=(\begin{array}{l:l}{A}&{0}\\{\hline0}&{B}\end{array})\quad\mp@subsup{M}{C}{}=\mp@subsup{M}{A}{}(O)\mp@subsup{M}{B}{
```


Thursday November 13

Last time, we noted that A defines a finitely generated module, and this is the converse. Given a finitely generated module, take $X=$ er pi (where pi is the obvious projection map). Then define A : $R^{\wedge} X->R^{\wedge} n$ by mapping the basis elements of X to itself (since we took the generating set of ger pi X to be the whole set er pi, it makes sense).

Step 2

If P and Q are invertible, then $M_{A}=M_{A}$

We would like to show that if we had such a commutative diagram, then the modules that are generated are equal.

To show that $M_{A} \cong M_{A^{\prime} \cdot}$:
Define an isomorphism $\Phi: M_{A} \rightarrow M_{A^{\prime}}$ by $\Phi\left([a]_{\mathrm{im} A}\right)=[P \alpha]_{\mathrm{im} A^{\prime}}$, where \backslash alpha \backslash in $\mathrm{R}^{\wedge} \mathrm{n}$.
To show that this map is well-defined, we show that if $[\alpha]_{\operatorname{im} A}=0$ then $[P \alpha]_{\operatorname{im} A^{\prime}}=0$. If $[\alpha]_{\mathrm{im} A}=0$, then
$\alpha \in \operatorname{im} A$ so $\alpha=A \beta$ for some $\beta \in R^{X}$. Let $\gamma=Q^{-1} \beta$, so that

$$
P \alpha=P A \beta=P A Q Q^{-1} \beta=P A Q \gamma=A^{\prime} \gamma . \quad \text {, so }[P \alpha]_{\operatorname{im} A^{\prime}}=0
$$

Now, we would like to put the matrix A into this form $\mathrm{A}^{\prime}=\left(\quad{ }_{0} \quad\right.$ by using $A \mapsto A^{\prime}=P A Q$, where $\mathrm{P} \backslash$ in $\quad M_{n}(R)$ is invertible and $Q \in M_{|X|}(R)$. We can do this by using row/column operations on A , since row operations correspond to invertible matrices P and Q : Permutation
matrices are invertible and swap rows and columns. The matrix $a_{i j}(b)$ which is identity plus b in the (i, j) position is invertible, and adds a multiple of b times a row/column to a row/column. Finally, we can take an identity matrix plus a row containing arbitrary things, which is still invertible. That is, $\sum_{\substack{i=1 \\ i \neq j}}^{|X|} a_{i j}\left(b_{i}\right)$ is invertible and will add a multiple of column j to column i for all i.

So putting A into this form $\left(\begin{array}{llllll}a_{0} & & & & \\ & a_{2} & & & & \\ & & & a_{0} & & \\ & & a_{0} & \\ \\ & & & & \\ \\ & & & 0\end{array}\right)$ by using maps $A \mapsto A^{\prime}=P A Q$ comes down to figuring out whether we could put it in that form by using row operations on A. Since we showed that if $A^{\prime}=$

PAQ, $M_{A}=M_{A}$, we have that M is "associated with" a matrix of this form, $\left(\begin{array}{lllllll}a_{1} & & & & & \\ & a_{3} & & & & & \\ & & \ddots & & & \\ & & & a_{0} & & & \\ & & & & \ddots & \\ & & & & & \\ \end{array}\right)$, and so we can find the structure of M.

Step 3

We need to show that given any matrix A, we can put it in this form

Of all the matrices reachable from A, let A^{\prime} be one (not unique) that has a non-zero entry with a smallest D-H norm (i.e. \# of divisors). WLOG, that entry is a_{11} (we can arrange this with permutations).

Claim: the rest of the first row/column is divisible by a11.
Set $\mathrm{a}=\mathrm{a} 11$.
In a Euclidean domain, it is easier: If there is an entry in the first row/column that is not divisible by a11, b, then $b=q a+r$, so we can reduce c to r, which has a smaller number of divisors.

In a PID:
I can find a linear combination of a_{11} and c such that $s a+t b=\operatorname{gcd}(a, b)$. Let $q=\operatorname{gcd}(a, b)$.
We would like to find matrices P, Q, such that $P A Q=[q \ldots]$, and this would be a contradiction.

Then

$$
\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{rr}
s & -\frac{b}{q} \\
t & \frac{a}{q}
\end{array}\right)=\left(\begin{array}{ll}
q & 0
\end{array}\right) . \quad . \quad \text { Let } \mathrm{Q}^{\prime}=\left(\begin{array}{rr}
s & -\frac{b}{q} \\
t & \frac{a}{q}
\end{array}\right)
$$

, and let $\mathrm{Q}=$

and let P be the identity matrix. Q is invertible, since $\operatorname{det} \mathrm{Q}=1$.

Thus the claim is proved.

$\Rightarrow W L O G \quad A^{\prime}=\left(\begin{array}{c}a_{11} \\ \vdots \\ 0 \\ 1\end{array}\right)$

Claim: Anything. $*$ divisible y an. 47 some d in $*$ not divater by a_{n}, we use now operations to hing it to the fist row/cd and we do the same os above to fund an element \bar{a} less divisor.

Now we do now reduction to *, using induction to get a meting
 Now remember that if $a=\pi p_{i}^{s_{1}}$ then $\frac{R}{\langle a\rangle}=\oplus \frac{R}{\left\langle p_{i}^{\beta_{i}}\right\rangle} \Rightarrow \quad \Rightarrow \quad$ we wanted

Thursday November 20

Jordan Canonical Form
Big picture of the JCF
This is a Corollary to the Fundamental Theorem of Finitely Generated Modules.
Part 1
Start with a matrix T with entries in F , so T is a linear transformation from Fn to Fn . En may be endowed with the structure of a $\mathrm{F}[\mathrm{x}]$ module by identifying the action as $\mathrm{xu}=\mathrm{Tu}$. Since this module is finitely generated (by any basis of Fn), Fn is isomorphic, as a $\mathrm{F}[\mathrm{x}]$ module, to $R^{k} \oplus \bigoplus R /\left(p_{i}^{s_{i}}\right)$, , where $\mathrm{R}=$ $\mathrm{F}[\mathrm{x}]$.

So now, we have T is a linear transformation from $R^{k} \oplus \bigoplus R /\left(p_{i}^{s_{i}}\right), \quad R^{k} \oplus \bigoplus R /\left(p_{i}^{s_{i}}\right)$,
Picking

$$
R /\left(p_{1}^{s}\right)
$$

a basis element for each of the
, we can show that T is of the form basis.

Part 2
We prove that Fn is isomorphic to $\mathrm{Rn} / \mathrm{im}(\mathrm{xl}-\mathrm{T})$.
Part 3
The big goal of this section is that given a matrix T with entries in F, we would like to find the Jordan Canonical Form of T. From Part 1, we know that Fn is isomorphic to $R^{k} \oplus \bigoplus R /\left(p_{i}^{s_{i}}\right)$, as a $\mathrm{F}[\mathrm{x}]$ module, but we need to figure out what this looks like explicitly (and once we do that, it'll be obvious what the JCF looks like from Part 1).

Main steps of this (apparently, this was done in the year 2010):

1. Starting with a matrix T, figure out the corresponding matrix A in $M(F[x])$ from the Structure Theorem by computation (In details: from the structure theorem, every finitely generated module is associated to a matrix A - think of A as the kernel. $F n$ is a finitely generated $F[x]-$ module, with the action of x as $x u=T u$, so we would like to find the matrix A in $M(F[x])$ associated to this finitely generated $\mathrm{F}[\mathrm{x}]$-module).

Example: $T=\left(\begin{array}{cc}3 / 2 & 1 / 2 \\ 1 / 2 & 3 / 2\end{array}\right)$. would become $A=\left(\begin{array}{cc}\frac{3}{2}-t & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2}_{2}^{2}-t\end{array}\right)=T-t I$.
2. Row and column reduce this matrix A, so we (sort of) get a diagonal matrix.

Example: Row reducing

$$
A=\left(\begin{array}{cc}
\frac{3}{2}-t & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}-t
\end{array}\right)=T-t I \quad \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & t^{2}-3 t+2
\end{array}\right) .
$$

3. Figure out the module this matrix is associated to (from the Structure Theorem). The JCF would be obvious.

Example: $\rightarrow\left(\begin{array}{cc}1 & 0 \\ 0 & t^{2}-3 t+2\end{array}\right)$ becomes $V \cong F[t] /\langle(t-1)(t-2)\rangle \cong F[t] /\langle t-1\rangle \oplus F[t] /\langle t-2\rangle$. , so

$$
[T]=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

4. To actually figure out the basis, we would have to write down the isomorphism (from the Structure theorem) explicitly, and trace through the row operations.

Part 4

As an aside, if P and Q are invertible in this diagram, then we can cover the map c .

This shows explicitly that in particular for step 2 in Part 3, row-reducing doesn't affect En, using the symbols from Part 2 (that is, without just quoting that it works from the proof of the Structure theorem).

So in step 2 , row reduction may not always work, but the goal is to find invertible matrices, P, Q, so we get it in the right form.

The details of the JCF

Part 1

In words:

This is because we are identifying the action of x as $x u \Leftrightarrow=>T_{u}^{r}, T-\lambda: e_{i},->e_{i+1}, e_{s+1}, \Rightarrow 0$, so $T: e_{i} \mapsto e_{i+1}+\lambda e_{i}$.

Part 2

To show that Fn is isomorphic to $\mathrm{Rn} / \mathrm{im}(\mathrm{xl}-\mathrm{T}$), consider
 where pi is defined by $t_{i} \mapsto \epsilon_{i}$ and $\quad x^{k} \mapsto A^{k} e_{i}$.

We will show that $\left\langle r_{i}\right\rangle_{i=1}^{n}=k e n \mathbb{T}$, for $r_{i}=\chi e_{i}-A e_{i}$, so then by the first isomorphism theorem, En \cong Rn/ker pi \cong Rn/im (xl-T).

To show that

$$
r_{i}=x e_{i}-A e_{i} \epsilon \text { kurT } P_{1} \text { oof: } \pi(r i)=A e_{i}-A e_{i}=0 \text {. }
$$

To show the other inclusion:
 This is the identity map, since
Let's take same $l_{i} \in F^{n}$ and see where it goes. $e_{i} \rightarrow e_{i}$ (modulo some relations) $\rightarrow e_{i}$ marlublo sore elation)
$\rightarrow e_{i}$
\alpha is well-defined, from the first inclusion.
We must show that \alpha is injective to show the inclusion, and this is true if and only if \backslash beta is surjective.

To show that \beta is surjective:
el need to shaw that every element of $R^{n} /\left\langle r_{i}\right\rangle_{i=1}^{n}$ is in the image of β
u need to shew every $x^{k} e_{i}$ can be written,
\bmod / r_{i}, as a combination of $e_{j} ' s$.
Indued $x^{k} e_{i}=x^{k-1}\left(x e_{i}\right) \quad r_{i}=x c_{i}-A e_{i}$

$$
=x^{k-1}\left(A e_{i}\right) \quad \Rightarrow r_{i}+A e_{i}=x e_{i}
$$

$$
=A x^{k-1} e_{i} \quad \Rightarrow \text { mod } r_{i}, x e_{i}=A c_{i}
$$

now can inductively repeat process
$=A A^{k-1} e_{i}$
$=A^{k} e_{i}$ (just a column vector) $\Rightarrow x^{k} e_{i}=A^{k} e_{i} \in \operatorname{im} \beta$.

Part 4

Having this diagram, with P, Q invertible, we would like to recover c:
where $c: F^{n} \rightarrow F^{n}$ is defined as $c e_{i}=\pi_{B}\left(P e_{i}\right)$. However, applying π_{B} is highly nontrivial. Note that $\pi_{B}\left(x^{k} u\right)=B^{k} u$ and write $P=\sum_{k} x^{k} P_{k}$ where $P_{k} \in M_{n}(F)$. Then

$$
\begin{aligned}
c e_{i} & =\pi_{B}\left(P e_{i}\right) \\
& =\pi\left(\sum_{k} x^{k} P_{k} e_{i}\right) \\
& =\sum_{k} B^{k} P_{k} e_{i}
\end{aligned}
$$

and so $C=\sum_{k} B^{k} P_{k}$.

GCD Trick

The "GCD" Trick
If $q=\operatorname{gcd}(a, b)=s a+t b$, the equality $\left(\begin{array}{cc}s & t \\ -b / q & a / q\end{array}\right)\binom{a}{b}=\binom{q}{0}$ allows us to replace pairs of entries in the same column by their greatest common divisor (and a zero!), using invertible row operatons. A similar trick works for rows.

Factoring Diagonal Entries

Factoring Diagonal Entries

If $1=\operatorname{gcd}(a, b)=s a+t b$, the equality $\left(\begin{array}{cc}s a & 1 \\ -t b & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & a b\end{array}\right)\left(\begin{array}{cc}a & -b \\ t & s\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$ is an invertidle row-column-operations proof of the isomorphism $\frac{R}{\langle a\rangle} \oplus \frac{R}{\langle b\rangle} \approx \frac{R}{\langle a b\rangle}$.

The Jordan Trick
We would like to show:

We know that

structure theorem, kernel).
Explicitly,

Then repeat for the bigger version...
Monday November 24

Tensor Products

We wish to put a group structure on modules. Let's try using direct sums...
M.

First we say something completely wrong: $(R-\bmod , \oplus)$ is an "abelian group."

$$
\text { 1. } M_{1} \oplus M_{2}=M_{2} \oplus M_{1}\left(M_{1} \oplus\left(M_{2} \oplus M_{3}\right)\right.
$$

0 . $O($ module $\bar{\omega}$ single element jer) $O \oplus M=M$.

It doesn't work, since there are no inverses.

1. No inverses!
2. The above equalities are really isomorphisms.

Nevertheless,
We will show $(\underbrace{R-\bmod },(\in, \otimes)$ is a ring" in a similar sunde celt'r since all mules in a ing apply up to iso except. inverses.

Definition of tensor product:
Tenor Product $M \otimes N$ of two Moducls: (Defnof \& tenser product, not the keen product) $M \otimes N$ is a module along with a bilinear map $Z: M \times N \rightarrow M \otimes N$ such that

$$
M \times N \xrightarrow[\text { b:luncan }]{\tau} M \otimes N
$$

Given any module P and lilinien $\rho: M \times N \rightarrow P$, $\exists!\alpha: M \otimes N \rightarrow P$ s.t. $\rho=\alpha \circ Z$.

A better way of thinking of tensor products:

Theorem: $M \otimes N$ exists ie there is such a module and it is unique up to an isomorphism. (m in)
Proof: Let $M \otimes N=\langle m \otimes n: m \in M, n \in N\rangle /$ ulations.

$$
\begin{aligned}
& M O N=\left\{\sum_{i=1}^{K} a_{i} m_{i} \otimes n_{i}: a_{i} \in R, m_{i} \in M, n_{i} \in N\right\} / \mathrm{hel} . \\
& \text { Now we meed to knait chat H. }
\end{aligned}
$$

The relations are the obvious ones:

$$
\begin{aligned}
& v, v_{1}, v_{2} \in V ; w, w_{1}, w_{2} \in W ; c \in K ; \\
& \left(v_{1}, w\right)+\left(v_{2}, w\right) \sim\left(v_{1}+v_{2}, w\right) \\
& \left(v, w_{1}\right)+\left(v, w_{2}\right) \sim\left(v, w_{1}+w_{2}\right) \\
& c(v, w) \sim(c v, w) \sim(v, c w)
\end{aligned}
$$

(from Wikipedia)

To make the mapping bilinear we mod out the relations that define a bilinear relation.
So $M \otimes N$ is an R-module an Z is obviously bilinear. Suppose $\rho: M \times N \rightarrow \rho$ bilinear is given. We need a linear α s.t. $\rho=\alpha \circ Z$.

$$
\alpha\left(\sum a_{i} m_{1} \otimes n_{i}\right)=\sum a_{i} \rho\left(m_{i}, n_{i}\right) .
$$

Claim: α is well defined. To check well defined we need to see if all of our relations are mapped to 0 . $\propto\left(\left(m_{1}+m_{2}\right) \otimes n-m_{1} \otimes n-m_{2} \otimes n\right)$

$$
=\rho\left(\left(m_{1}+m_{2}\right), n\right)-\rho\left(m_{1}, n\right)-\rho\left(m_{2}, n\right)
$$

$$
=0 \text { since } \rho \text { is bilinear. }
$$

The same holds for all of the other relations.
That was existence.
To show uniqueness:
Main idea: Use the universal property on both of them, and then use the uniqueness of the universal property.

Theorem: $M \otimes N$ is unique up to bomaphis m.
Proof: Suppose $(M \otimes N, Z)$ and $(M \bar{\otimes} N, \bar{Z})$ both satisfy the universal property. Then using the universal peqpenty for $M \otimes N \xrightarrow{M} \xrightarrow{2} M+N$

$$
\bar{z} \searrow \bar{\otimes} N^{k \cdot \exists \alpha}
$$

$\exists \alpha: M \widetilde{\otimes} N \rightarrow M \bar{\otimes} N$
Then using the universal mpperty for $M \bar{\otimes} N$ $M \times N \xrightarrow{M} M \bar{\theta}$

Now use the universal property for $M \otimes N$ as follows: $M N \xrightarrow{ } M \otimes N$
z) ${ }_{M O N N}$ Id both id: $\bar{\alpha} \circ \alpha$ are maps that satisfy our diaquam.
But we have uniqueness in the universal property so $I=\bar{\alpha} \circ \alpha$. We do the same to find $\alpha \circ \bar{\alpha}=I$.

Dimension of tensor products:
Example: Suppose V, W are vectas spaces over a field F with bases $\left(u_{i}\right)_{i=1}^{n}$ of V and $\left(\omega_{j}\right)_{j=1}^{m}$ of ω.
Claim:V®W is a vecta space of $\operatorname{dim} n \cdot m$. with lases $\left(u_{i} \otimes w_{j}\right)_{i, j=1}^{n, w}$

Proof: Pick the obvious basis $\left(u_{i} \otimes \omega_{j}\right)$.
Show the basis spans:

Proof: Guin $u \in V$, $w \in W$, we need to shew $u \otimes \omega$ is a linear combination of $\left(u_{i} \otimes \omega_{j}\right)_{i, j=1}^{n, 1}$
$u \otimes \omega=\left(\Sigma \alpha_{i} u_{i}\right) \otimes\left(\Sigma \beta_{j} \omega_{1}\right)$ $=\sum \alpha_{i} \beta_{j} u_{i} \otimes \omega_{j}$ due to the relations.

Show linear independence:
Now we need to do linear independence. Let $\left\{\phi_{i}\right\},\left\{\psi_{j}\right\}$ be the dual bases of $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ in V^{*} and W^{*}, respectively.
Claim 3.13. If $\phi \in V^{*}$ and $\psi \in W^{*}$ then $\phi \otimes \psi: V \otimes_{F} W \rightarrow F$ given by $\phi \otimes$ $\psi\left(\sum a_{a} v_{a} \otimes w_{\alpha}\right)=\sum a_{a} \phi\left(v_{a}\right) \psi\left(w_{\alpha}\right)$ is well-defined.

The above claim is easy to verify, and just involves checking that the relations quotiented out by in constructing $V \otimes_{F} W$ are preserved. It is clear that $\phi \otimes \psi$ is linear.

Now assume that $\sum a_{i, j} v_{i} \otimes w_{j}=0$. Apply $\phi_{i^{\prime}} \otimes \psi_{j^{\prime}}$ to both sides. We get $\sum a_{i, j} \delta_{i, j} \delta_{j, j^{\prime}}=0$, so $a_{i^{\prime}, j^{\prime}}=0$ and we got linear independence.

Thursday November 27

Examples of tensor products:

are isomorphic if X and Y are finite. We could either define the map directly, or use the universal property on the obvious bilinear map.

There ore some queries always true about μ :
(3) μ is always $1-1$ (challenging)
(2) Isomorphism if x or y is finite. (easy)
s.......e.... $=$

0 ($q=5+$ mengeny)
Example: $\left.y q \overline{\bar{e}} g c_{c d c} a, b\right)$ in a U.F.D, and $q=5 a+t b$, then

$$
\begin{aligned}
& \frac{R}{\langle a\rangle} \otimes \frac{R}{\langle b\rangle} \cong \frac{R}{\langle q\rangle} \quad \text { in and } q=5 a+t b \text {, then } \\
& \langle a\rangle\langle b\rangle=\langle q\rangle
\end{aligned}
$$

Warning! Do not confuse direct sums with tensor products.

Proof: $\left[r_{1}\right]_{a} \otimes\left[r_{2}\right]_{b} \longmapsto\left[r_{1} r_{2}\right]_{q}$

Obviously well defined since if we change r_{1} by a multiple of a then the result changes y a multiple of a, but q/a so the result changes $l y$ a multiple of q. The same is

For the first direction, define the obvious map
$\left[r_{i}\right]_{i} \otimes \mathscr{Q}\left[r_{c}\right]_{b} \longmapsto\left[r_{i} r_{2}\right]_{t}$

For the other direction, define the obvious map.
To check well-defined, let $q=s a+t b$ and simplify.

Thus, they are isomorphic:

Properties of tensor products

Monday December 1

A functor is a map $\mathrm{F}: \mathrm{C}-\mathrm{D}$ where C, D are categories, such that if $\phi: A \rightarrow B$, there is a morphism $F \phi: F A \rightarrow F B$: such that $F(\phi \circ \psi)=F \phi \circ F \psi$. Moreover, the identity morphisms are mapped to identity morphisms.

A bifunctor is a map $F: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{E}$, where $\mathrm{C}, \mathrm{D}, \mathrm{E}$ are categories, such that F is a functor in each variable separately.

Example $3.25 . \otimes$ is a bifunctor. That is, fix a module N, then the map $M \mapsto$ $M \otimes N$ is a functor, and similarly if we fix a module M then the map $N \mapsto M \otimes N$ is also a functor. In more detail, suppose that $M_{1} \rightarrow^{\delta} M_{2}$. Then there is a map $f \otimes N: M_{1} \otimes N \rightarrow M_{2} \otimes N$, which is given by the linear extension of $m_{1} \otimes n \mapsto$ $f\left(m_{1}\right) \otimes n$. One needs to check that this is well-defined, but this is not difficult, since f is a module morphism. One also needs to check that if $M_{1} \mapsto^{g} M_{2} \mapsto^{f} M_{3}$, then $(f \circ g) \otimes N=f \otimes N \circ g \otimes N$. This is also obvious. Note that if we have morphisms $f: M_{1} \rightarrow M_{2}$ and $g: N_{1} \rightarrow N_{2}$ then there is a map $f \otimes g: M_{1} \otimes N_{1} \rightarrow M_{2} \otimes N_{2}$, given by the linear extension of $m_{1} \otimes n_{1} \mapsto f\left(m_{1}\right) \otimes g\left(n_{1}\right)$.

Example of tensor products.

Examples:

- abs a z-mod since ablian

1) Over $R=\mathbb{Z}$ Q is a module over \mathbb{Z} (since abelian)

$$
\begin{aligned}
\mathbb{Q} \otimes \mathbb{Z}^{n} & =Q \otimes(\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}) \\
& =Q \otimes \mathbb{Z}(\oplus Q \otimes \mathbb{Z} \oplus \ldots \oplus Q \otimes \mathbb{Z}
\end{aligned}
$$

Since \mathbb{Z} multiple \rightarrow titi $Q \oplus \ldots \oplus Q=Q^{n}$
identity.
In general, güen a sing mouphiom $\phi: R \rightarrow S$ it then S into an R-module.
Now govern an R-module M, set

$$
M_{s}:=S \theta_{R} M
$$

is an S-module. Wy $S^{\prime} \cdot(5 \otimes m):=\left(S^{\prime} 5\right) \otimes m$ (check well defend and tuns $S \otimes_{R} M$ into an S-module) and $R_{5}^{n}=S^{n}$

Field of Fractions defined by universal property:
Proposition: Given any domain R, there exists a unique up to isomorphism) field "the field of fractions of $Q(R)$ " st.

Proof (Start): $Q(R)=\frac{a^{n}}{b}$ where $a, b \in R, b \neq 0$.
(Didn't actually prove this theorem)
Localization

$$
\begin{aligned}
& \text { Defin: } S^{-1} R=\left(\left\{\begin{array}{l}
\left\{\frac{r}{S}, r \in R\right. \\
S \in S
\end{array}\right\} /\left(S_{2} r_{1}=S_{1} r_{2}, \quad 0=\frac{c}{s_{1}}=\frac{r_{2}}{s_{3}} \cdots, \frac{r_{1}}{s_{1}} \sim \frac{r_{2}}{s_{2}}\right.\right. \\
& \text { "the localization of } R \text { at } S^{\prime \prime} \text {. }
\end{aligned}
$$

$$
M \cong R^{k} \oplus \oplus \frac{R}{\left\langle p_{i}^{3 i}\right\rangle}
$$

A module M is a torsion module if for all m \in M, there exists nonzero r in R such that $r m=0$.
Claim: $R /\langle a\rangle$ is torsion:
Proof: if $m \in R /\langle a\rangle$ then $a m=0$.
Claim: If M is torsion, then $M_{Q(R)}=0$.
Proof: $m \in M$ and sine, M torsion \exists 衴.t. $r m=0$.
In $M_{Q(R)}=Q(R) \otimes M$

$$
m=1 \otimes m=r \cdot\left(\left(\frac{1}{r}\right) \otimes m\right)=\frac{1}{r} \otimes r m=0
$$

To show that k is unique:

$$
\begin{aligned}
\therefore M_{Q(R)} & =Q(R) \otimes\left(R^{k} \oplus \oplus R /\left\langle p_{i}^{s_{i}}\right\rangle\right) \\
& =Q(R)^{k} \otimes 0=Q(R)^{k} .
\end{aligned}
$$

$\operatorname{dim}_{Q(R)} Q(R) \odot M=K$ so K is invariant under M $\Rightarrow K$ is unique.

To show that the torsion part is unique, consider

$$
\operatorname{dim}_{R /\langle p\rangle} M_{R /\langle p\rangle}
$$

$$
\operatorname{dim}_{R /\langle p\rangle} M_{R /\langle p\rangle}=\operatorname{dim}_{R /\langle p\rangle}(R)^{k} \oplus \oplus / R
$$

$$
\Rightarrow \operatorname{dim}_{R \mid\langle p\rangle}\left(\frac{R}{\langle p\rangle}\right)^{k} \oplus \oplus\left(\frac{R}{\langle p\rangle} \oplus \frac{R}{\left\langle p_{i}^{s i\rangle}\right\rangle}\right)=k+\mid\left\{_{i}: p_{i}=p+\mid\right.
$$

So the number of times p appears in the list of $\left(p_{i}\right)$ is fixed (determined). This is not quite uniqueness. We also need to shew that the multiplicities are fixed. (Reminder: p_{i} 's can reseat)
Proofs: (1) $\operatorname{lm} \hat{p^{s}}=p^{s} \cdot R \underset{p a \cdot \frac{p^{5} \cdot a-a}{\sqrt{-a}}}{\sum^{5}}$

$$
\text { (2) } \begin{gathered}
\left(p^{s}, q^{t}\right)=1 \Rightarrow\left(1=s p^{s}+t^{\prime} q^{t}\right) \forall \sigma_{1} \tau \in R \text { s.t. } \\
\sigma p^{s}+\tau q=1
\end{gathered}
$$

In $R / L q t), 1=1-\tau q^{t}=\sigma p^{3}=\hat{p}^{s}=\sigma$
$\Rightarrow 1 \in \operatorname{im} \hat{p}^{s}$ so everything else in the image.
(3) $\ln R|\angle p t\rangle, p^{s}=0$ so $\hat{p}^{s}=0$ so imp $\hat{p}^{s}=0$.

$$
\begin{aligned}
& \text { (4) . wm } \left.\hat{p}^{s}=p^{s} R / \operatorname{Lr} p^{t} R \cong R / p^{t-s}\right\rangle \\
& p^{5} a \stackrel{-1}{\text { dude }} a \\
& p^{5} a \stackrel{A_{0}}{\stackrel{\text { dude }}{>}} a \text {., } A 6 \\
& \operatorname{dim}_{R /\langle p\rangle}\left(i m \hat{p}^{s}\right)_{R / L p\rangle}=K+\#\left\{\begin{array}{c}
i: p_{i}=p \\
s_{i}>s
\end{array}\right\}
\end{aligned}
$$

This proves uniqueness.
Wednesday December 3
Topological Proof of why you can't solve the quantic
Main diagram:

Proof by Contradiction. Suppose there is such an equation for roots.

Claim 1:

Let E be the set of degree 5 polynomials, subtract the ones with double roots.

This is a homomorphism:

Basically, this is because you can move around on the left side, so that it corresponds to a permutation of the roots. More precisely,

Suppose you had a path of equations; the base point of the path corresponds to the solution given here. As I move within the space of equations, I can keep my 5 fingers on the solutions and they will continue to move as well and they never coincide because I moved the discriminant and I never have confusion over which finger goes where. So my fingers go a certain way, or, at the base point I have a specific collection of solutions and I will number them 1-5 and then when I move in the space of equations the corresponding solutions move and maybe one will come back to where it was (because the equation comes back to where it was) and I will get some permeantation. If you have ever seen covering space, this is really what I am telling you.

Claim 2:

$$
\text { 1. } \pi_{1}(E) \stackrel{\sigma}{\rightarrow} \rightarrow 1 /\left(S^{2} \gg S_{5} i_{\text {is suriective. }}\right.
$$

Suppose you have some permutation. In fact, for every arrangement of solutions, I can always call them $x-1$ up to $x-5$. If I move in this space in some way, then this polynomial changes in a certain way and at
the end it comes back to where it was because if the end of the solution comes back to where they were, then the equation doesn't change.

Claim 3:

3. If $\gamma \in \pi_{1}(E)$, For always points at a root.

If gamma is a member of pi E, then F composed with gamma (F being this entire system) makes sense and it always points at a root.

Claim 4:

In particular, if gamma is the curve here which induces the cyclic permutation 123 , or sigma, then F composed with gamma points at solution number 1 both at $\mathrm{t}=0$ and $\mathrm{t}=1$, and this will be a contradiction.

Proof:
If you have a closed path in the complex plane and you evaluate the nth root and you continuously change a branch of the nth root, then the nth root at the end of the path is not necessarily equal to the nth root at the beginning of the path. Suppose you have a path that circles around the origin; when you go a full circle, the square root is always a path of the angle. If you have a path whose rotation number around the origin is 0 , and you compute the square root and you make a continuous choice of the nth root along this path then at the end it comes back to where it was. When you compute this rational function of the coefficients, the image of this rational function does some funny path in the plane, which may or may not come back to where it was. However, if gamma is equal to gamma 1, gamma 2, gamma 1 inverse, gamma 2 inverse, then the rotation number of this rational function would have to be zero because you rotate a certain amount going each gamma (forward for gamma and backwards for gamma inverse)...you would eventually go back to where you started. If gamma is a commutator, then after you followed gamma, over here you're in the same place after you've taken the root function once. What if gamma is a commutator of two commutators? If you go along gamma 5 and gamma 6, the input for this whole function is a closed root. Along gamma 5 and 6 they have some rotation number and so the nth root, along gamma, comes back to where it was.

The only remaining thing to show is: claim (123) is a commutator of any order.

QED.

