
Text in purple = things that Prof. Dror Bar Natan said in class. 

Monday, October 27th 

 

 

Caley-Hamilton Theorem 

 

Wrong Proof #1:  

Diagonalize matrix A, so the entries on the diagonal are the eigenvalues. Since the characteristic 

polynomials annihilates eigenvalues, it follows.  

This is not our proof since we haven’t talked about diagonalization, and the ring can be any 

commutative ring, so we can’t diagonalize, and we can’t use eigenvalues and eigenvectors.  

Wrong Proof #2: 

 



 

Basically, it’s saying that if we could just sub in A into det (tI – A), then we could also sub in A into tr (tI – 

A), and then the calculation doesn’t make sense.  

Facts needed for the correct proof: 

Definition of Adj A: 

 

Fact about adj A: 

 

You should have seen this proof in previous courses. The proof of this fact is entirely algebraic, and it 

doesn’t use anything except for addition and multiplication. The entries of A adj A can be reinterpreted 

as the determinants of the original matrix minus the row of I and column of j and replaced by other 

things. It’s entirely algebra, so it’s true over any commutative ring R.   

Correct proof: 

Main idea of correct proof: 

Sub in A into this equation: 

  

Full correct proof: 



(*) 

The second equality there is from the isomorphism .  

Recall that the evaluative map is defined by: 

 

We would like to use the evaluation map and substitute the matrix A into (*). But the evaluation map is 

a ring homomorphism only if the A commute with the Bi’s. They’re matrixes, so even if the ring itself is 

commutative, we would still have to prove that the matrices commute.  

We’ll prove this in the lemma (and R doesn’t have to be commutative): 

 

 

The first line of the proof is because . 

Using this lemma, we finish the proof of the Caley Hamilton theorem by evaluating (*) at A: 



 

 

 

 

 

Monday, November 10th 
Direct Sums 

2 Definitions: The “set” definition (where addition and scalar multiplication is defined in the obvious 

way) and the category theory definition using universal property.  

Our goal is to prove: 

 

Main idea of the proof: 

Step 1: Show that M is associated with a matrix A. (Roughly speaking, A is associated with the “kernel of 

M”. We will define this specifically.) 

Step 2: Show that if we use row operations on the matrix A to get another matrix A’, M will also be 

associated with the matrix A’.  

Step 3: Show that we can use Gaussian elimination on A to get to a matrix of this form: 

.  

Step 4: Since M is associated with this matrix , .  

Details of the proof: 



Step 1 
Defining the obvious map for a finitely generated module, R^n -> M:  

 

Let X be a generating set for ker pi, so that any element in ker pi can be written as rx for some r \in R and 

x \in X.  

 

Defining another map from X -> R:  

 

Explaining this map in details:  

 =  

We have a map A:  -> R^n by defining A(b) = , where b is in R^x. This sum is finite because 

b(x) \neq 0 for finitely many x’s, and  is in R^n because b(x) is in R and x is in ker pi (which is in 

R^n), so  is a sum of elements in R^n.  

 

 

 

 and  

Since X is a generating set for ker pi, the image of A is ker pi.  

M is isomorphic to R^n/im A:  

By the first isomorphism theorem, pi is surjective, so R^n/ker pi = M. But ker pi = im A, so we also know 

that R^n/im A = M.  

 



 

A can be interpreted as an n x X matrix because A maps R^|X| to R^n. An n x X matrix maps something 

that’s |X| dimensional to something that’s n dimensional. Furthermore, in each row, there are only 

finitely many non-zero entries, since anything in R^X only has finitely many non-zero entries (so if we 

take A(e_x) for each x, we would be summing up only finitely many non-zero entries).  

 

  

The finitely generated module is just the image of the matrix A (i.e., the column space), then projected 

by the map pi.  

 

 

 

Thursday November 13 

 

Last time, we noted that A defines a finitely generated module, and this is the converse. Given a finitely 

generated module, take X = ker pi (where pi is the obvious projection map). Then define A: R^X -> R^n 



by mapping the basis elements of X to itself (since we took the generating set of ker pi X  to be the 

whole set ker pi, it makes sense).  

 

Step 2 

  

 

We would like to show that if we had such a commutative diagram, then the modules that are 

generated are equal.  

 

To show that :  

Define an isomorphism  by , where \alpha \in R^n.  

To show that this map is well-defined, we show that if  then . If 

, then  

, so .  

 

Now, we would like to put the matrix A into this form A’= by using , 

where P \in . We can do this by using row/column 

operations on A, since row operations correspond to invertible matrices P and Q: Permutation  



 

 

So putting A into this form  by using maps  comes down to figuring 

out whether we could put it in that form by using row operations on A. Since we showed that if A’ = 

PAQ,  , we have that M is “associated with” a matrix of this form, , and so we 

can find the structure of M.  

Step 3 

We need to show that given any matrix A, we can put it in this form .  

 

 

 

 Jordan Canonical Form 
 


