Text in purple $=$ things that Prof. Dror Bar Natan said in class.
Monday, October $27^{\text {th }}$

$$
\begin{aligned}
& \text { Claim: } M_{n \times n}(R[x]) \cong\left(M_{n \times n}(R)\right)[x] \text {. } \\
& \text { i. "matrices } \bar{u} \text { entries as polynomials" ="polynomials } \bar{w} \text { coefficients as matisse". } \\
& \left\{\begin{array}{ccc}
\sum a_{11} x^{k} & \cdots & \sum a_{1 n_{k}} x^{k} \\
\vdots & \vdots \\
\sum a_{n_{k}} x^{k} & \cdots & \sum \sum_{n n_{k} x^{k}}
\end{array}\right\} \quad\left\{\begin{array}{c}
\sum A_{k} x^{k}: A_{k} \in M_{n \times n}(R) \\
A_{k}=\left(a_{i j_{k}}\right)
\end{array}\right\} \\
& \left\{\left(\sum a_{i j_{k}} x^{k}\right)\right\} \\
& \text { The map is to map coefficients to coefficients }
\end{aligned}
$$

Caley-Hamilton Theorem

Cayly-Hamiltorni"a matrix annihilates its characteristic polynomial" Let $A \in M_{n \times n}(R) R$ is a commutative sing.
$R[t] \ni x_{A}(t):=\operatorname{det}(t I-A)$

$$
\begin{aligned}
& \sum a_{k} t^{k} \quad\left(\begin{array}{cccc}
t-a_{11} & -a_{12} & \ldots & -a_{1 n} \\
-a_{21} & t-a_{22} & \ldots & -a_{2 i} \\
-a_{n 1} & -a_{n 2} & \ldots & t-a_{n n}
\end{array}\right) \\
& \operatorname{det}\left(a_{i j}\right)=\sum_{\sigma}(-1)^{\sigma} \prod_{i=1}^{n} a_{i \sigma j}
\end{aligned}
$$

Claim: $X_{A}(A)=0$ ie $\sum a_{k} A^{k}=X_{A}(A)=0$

Wrong Proof \#1:
Diagonalize matrix A, so the entries on the diagonal are the eigenvalues. Since the characteristic polynomials annihilates eigenvalues, it follows.

This is not our proof since we haven't talked about diagonalization, and the ring can be any commutative ring, so we can't diagonalize, and we can't use eigenvalues and eigenvectors.

Wrong Proof \#2:

$$
\text { Wrong Proof: } \begin{aligned}
X_{A}(A) & =\operatorname{det}(A I-A) \\
& =\operatorname{det}(0)=0 .
\end{aligned}
$$

You're putting a matrix in a matrix

 The LHS is a matrix and the RHS a scalar so the evaluation makes no sense.We aboo didn't use properties of determinant, so this would also le tue for the characterstic polynomial

Basically, it's saying that if we could just sub in A into et ($\mathrm{tl}-\mathrm{A}$), then we could also sub in A into tr (tl A), and then the calculation doesn't make sense.

Facts needed for the correct proof:
Definition of Adj A:

Aside: $\begin{aligned} \operatorname{Adj} A & =\text { "transpose of matux of minors" } \\ & =\left((-1)^{i+j} \cdot A j j\right)\end{aligned}$
 $=\left((-1)^{i+j} \cdot A_{j i}\right)_{i j}$
 $A_{j i}=\operatorname{det}$
 $i f \rightarrow$ column

Fact about adj A:

$$
\text { (4) } A \cdot \operatorname{adj} A=\operatorname{adj} A \cdot A=\operatorname{det}(A) \cdot I \text {. over any commutative } R \text {. }
$$

You should have seen this proof in previous courses. The proof of this fact is entirely algebraic, and it doesn't use anything except for addition and multiplication. The entries of A adj A can be reinterpreted as the determinants of the original matrix minus the row of I and column of j and replaced by other things. It's entirely algebra, so it's true over any commutative ring R.

Correct proof:

The second equality there is from the isomorphism

$$
M_{n x n}(R[x]) \cong\left(M_{m m}(R)\right)[x] \text {. }
$$

Monday, November $10^{\text {th }}$

Direct Sums

2 Definitions: The "set" definition (where addition and scalar multiplication is defined in the obvious way) and the category theory definition using universal property.

Defining the obvious map for a finitely generated module, $R^{\wedge} n \rightarrow M$:

$$
M=i m \pi \cong R^{n} / \operatorname{ker} \pi
$$

then $\Pi=\left\langle r_{x}: x e X\right\rangle \rightarrow$ nat claiming finite.

Let X be a generating set for jer pi, so that any element in ter pi can be written as $r x$ for some r \in R and x \backslash in X.

Defining another map from X-> R:

$\{a: x \rightarrow R ; a(x) \neq 0$ fa finitely many $x s\}=R^{x} \stackrel{A}{\leftrightharpoons} \stackrel{R}{ }^{n} \Rightarrow M_{\text {; }}$

Explaining this map in details:

$R^{x}=\{a: x \rightarrow R ; a(x)+0$ fa finitely many $x s\}$

We have a map $\mathrm{A}: \mathrm{R}^{\boldsymbol{x}}->\mathrm{R}^{\wedge} \mathrm{n}$ by defining $\mathrm{A}(\mathrm{b})=\sum_{x \in X} b(x) x$. where b is in $\mathrm{R}^{\wedge} \mathrm{x}$. This sum is finite because $\mathrm{b}(\mathrm{x})$ \eq 0 for finitely many $\mathrm{x}^{\prime} \mathrm{s}$, and $\sum_{x \in X} b(x) x$. is in $\mathrm{R}^{\wedge} \mathrm{n}$ because $\mathrm{b}(\mathrm{x})$ is in R and x is in er pi (which is in $\left.\mathbf{R}^{\wedge} \mathrm{n}\right)$, so $\sum_{x \in X} b(x) x$. is a sum of elements in $\mathrm{R}^{\wedge} \mathrm{n}$.

Since X is a generating set for jer pi, the image of A is ger pi.
Ser pi is isomorphic to $\mathrm{R}^{\wedge} \mathrm{n} / \mathrm{im} \mathrm{A}$:
By the first isomorphism theorem, $R^{\wedge} n /$ ger $p i=M$, so we also know that $R^{\wedge} n / i m A=M$. I think $k e r \pi \not \approx R^{n} / i m A$. is a typo, since this is what it's supposed to look like:

$R^{x} \xrightarrow{A} R^{n} \leadsto M:=R^{n} /$ lm A.

A conte interpreted as an $n \times X$ matrix finite ${ }^{\pi}$
 $$
R^{x}=\left\langle e_{x}\right\rangle=\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{array}\right) x
$$
 finite rows, infinitely many columno.

A can be interpreted as an $n \times X$ matrix because A maps $R^{\wedge}|X|$ to $R^{\wedge} n$. An $n \times X$ matrix maps something that's $|X|$ dimensional to something that's n dimensional. Furthermore, in each row, there are only finitely many non-zero entries, since anything in $R^{\wedge} X$ only has finitely many non-zero entries (so if we take $A\left(e_{-} x\right)$ for each x, we would be summing up only finitely many non-zero entries).

Turthermae, wry $n \times X$ matrix A defines a finitely generated module

The finitely generated module is just the image of the matrix A (i.e., the column space), then projected by the map pi.

```
Examples: }A=(1)\leadstoM=\mp@subsup{R}{}{\prime}/\mathrm{ in i. = 
    A=(a)\leadstoM=\mp@subsup{R}{}{\prime}/\mathrm{ ina. }
    A=(0)\leadstoM=R//m}(0)=R/{0\xi=R
    |f}C=(\begin{array}{l:l}{A}&{O}\\{\hlineO}&{B}\end{array})\quad\mp@subsup{M}{C}{}=\mp@subsup{M}{A}{}\in()\mp@subsup{M}{B}{}\mathrm{ .
```


Thursday November 13

Last time, we noted that A defines a finitely generated module, and this is the converse. Given a finitely generated module, take $X=$ er pi (where pi is the obvious projection map). Then define $A: R^{\wedge} X->R^{\wedge} n$ by mapping the basis elements of X to itself (since we took the generating set of ger pi X to be the whole set er pi, it makes sense).

We would like to show that if we had such a commutative diagram, then the modules that are generated are equal.

(I'll go through the proof later)

