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1. (a) 18 = 2 ·9. We know that the order of an element σ ∈ Sn is equal to the least

common multiple of the orders of the cycles in its cycle decomposition (since

cycles without common numbers commute). Thus, the above factorizations

of pairwise relatively prime factors of 18 are n = 18 or 2 + 9. It follows that

(see (b) for more explanations on the way of thinking) n = 2 + 9 = 11 is the

least integer required and an element of S11 which has order 18 is:

σ = (12)(34567891011)

(b) What we said previously about the order of an element in Sn narrows down

a bit our search for a permutation σ ∈ S26 of maximal order. Firstly, hav-

ing more than one cycle of the same type, in the cycle decomposition of

σ, does not contribute anything to the order of σ, but can only reduce it

(comparing to another choice). If σ1, · · · , σk are the cycles corresponding to

the structure of σ and a1, · · · , ak their orders, then a1 + · · · + ak ≤ 26 and

l.c.m.(a1, · · · , ak) = |σ|. We know that the l.c.m.(a1, · · · , ak) is the product

of primes to the maximal powers for which each one is a factor of some ai.

This indicates that we can produce larger orders by choosing a1, · · · , ak to be

pairwise relatively prime. Actually, it is wiser to choose the orders a1, · · · , ak
to be just powers of primes. For example, the choice a1 = 2, a2 = 3, a3 = 7

is better than a′1 = 2 · 7, a′2 = 3, since l.c.m.(a1, a2, a3) = l.c.m.(a′1, a
′
2) = 42,

but a1 + a2 + a3 = 12 < 17 = 14 + 3 = a′1 + a′2 which gives us more free-

dom for adding other cycles to the decomposition of σ (increasing its order).

Finally, I think it is more efficient to start with powers of smaller primes

and advance to larger ones. Keeping these in mind and playing around a

bit I concluded (at least I think so :P) that the maximal order of an ele-

ment in S26 is 22 · 32 · 5 · 7 = 1260 (22 + 32 + 5 + 7 = 25). One remark,

22 · 32 · 5 · 7 = 2 · 3 · 5 · 6 · 7 which would be 7!, if it wasn’t missing a 4.
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This gives me the sense that for the general case (Sn, perhaps for large n)

we should somehow try to achieve the growth of the factorial m! (in the

product), instead of that of the exponentials pλ11 · · · · · pλνν (with pi small, i.e.

2,3), because it is both greater and gives a polynomial sum m(m+1)
2 .

2. Let H ≤ G be a subgroup with index |G : H| = 2. It follows that G = H ∪ gH
(partition) for some g ∈ G r H (such g exists or it would be G = H and |G :

H| = 1). If x ∈ GrH, then xH ∩H = ∅ ⇒ xH = gH. Also, Hx ∩H = ∅ ⇒
Hx = gH ⇒ xH = Hx and so H is normal in G.

3. By definition CS20(σ) = {τ ∈ S20 | τσ = στ} = {τ ∈ S20 | τ−1στ = σ}.
If we consider the action of G × G → G, g · x = g−1xg = xg, for G = S20,

then CS20 is no other than the stabilizer Stab(σ). According to the formula

|Stab(σ)| = |S20|/|Orb(σ)|, we only have to find the order of the orbit of σ. Note

that Orb(σ) is the set of all permutations conjugate to σ. Since two permutations

are conjugate iff they have the same cycle structure, |Orb(σ)| is equal to the

number of all permutations of S20, whose cycle decomposition consists of one

5-cycle, two 3-cycles, and one 2-cycle. A simple combinatorial argument shows

that the latter equals
(
20
5

)
4!
(
15
3

)
2!
(
12
3

)
2!
(
9
2

)
1! = 20!

10!/8 ⇒ |CS20(σ)| = |Stab(σ)| =
10!/8 = 453, 600.

4. Let G be a group of odd order and suppose there is g ∈ G such that x = g−1x−1g

⇒ x−1 = g−1xg. If m be the order of g, then it is odd since m
∣∣|G|. This

fact along with the above relations yield x = g−mxgm = x−1 (formal proof -

induction). It follows that x2 = e and so the order of x is either 1 or 2. Hence,

x = e, because the order of x divides that of G, which is odd.

5. Assume that G/Z(G) =< gZ(G) >. Given x1, x2 ∈ G, let x1 = gmy1 and

x2 = gny2, where m,n ∈ Z and y1, y2 ∈ Z(G) (this is possible since G is the union

of the cosets gjZ(G), j ∈ Z). Since gm, y1, g
n, y2 commute with one another, so

do x1, x2 and therefore G is Abelian.

6. Suppose that the group of all automorphisms of G, Aut(G) =< f >, where f

is an automorphism of G. Define φ : G/Z(G) → Aut(G), which maps the coset

xZ(G) to the inner morphism g 7→ gx.

• φ is well defined: if xZ(G) = yZ(G), then gx = x−1gx = x−1ygy(x−1y)−1 =

gy, because x−1y ∈ Z(G).
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• φ is one to one: let gx = gy ⇔ x−1gx = y−1gy ⇔ (yx−1)g = g(yx−1),

∀g ∈ G ⇔ yx−1 ∈ Z(G) ⇔ xZ(G) = yZ(G).

Thus, G/Z(G) ∼= φ(G/Z(G)), which is cyclic as a subgroup of the cyclic group

Aut(G). Therefore, G/Z(G) is cyclic and by the previous exercise it follows that

G is Abelian.

7. (a) Let H ≤ G and (G : H) = n. Define the action of G on the set of left cosets

of H by (g, xH) 7→ gxH. This leads to a morphism ρ : G→ Sym({xH | x ∈
G}) = Sn, whose kernel is kerρ = {g ∈ G | gxH = xH, ∀x ∈ G} = {g ∈ G |
g(xHx−1) = xHx−1, ∀x ∈ G} =

⋂
x∈G

xHx−1 ≤ H. Of course, kerρ�G and

by the first isomorphism theorem we obtain G/kerρ ∼= ρ(G) ≤ Sn. More

particularly, (G : kerρ) < ∞ and so the normal subgroup N = kerρ meets

our demands.

(b) Define the map φ : {x(H1∩H2) | x ∈ G} → {xH1 | x ∈ G}×{xH2 | x ∈ G},
φ(gH1 ∩ H2) = (gH1, gH2). First, we notice that this map is well defined.

Indeed, if gH1 ∩H2 = hH1 ∩H2 ⇔ g−1h ∈ H1 ∩H2 ⇔ gH1 = hH1 and

gH2 = hH2. In fact, we have just showed that φ is also injective and hence

(G : H1 ∩H2) ≤ (G : H1) · (G : H2) <∞.
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