
PSet 11: Partial Solutions

DISCLAIMER: I cannot claim that what I have written here constitutes a perfect solution. Certainly
some mistakes are present; hopefully these mistakes aren’t too severe. I hope that my answers may serve as
a guide to you when studying for the final exam.

Problem 17.6. Let U = {(x, y, z) : x, y, z ≥ 0 and x + y + z ≤ 1}, and let g : U → R3 be the linear

transformation defined by g(x, y, z) =

1 0 −1
2 1 1
3 2 1

xy
z

 = (x− z, 2x+ y+ z, 3x+ 2y+ z). The set U ⊂ R3

may be visualized as follows:

Now, (f ◦ g)(x, y, z) = x− z + 4x+ 2y + 2z − 3x− 2y − z = 2x. We note that g is C1, as its components
are C1. We also observe that g maps this set U onto the tetrahedron S (in particular, it maps the unit
vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) to the vectors (1, 2, 3), (0, 1, 2), (−1, 1, 1), respectively). Moreover, since Dg
is non-singular on U , then by the Inverse Function Theorem we have that g is invertible, and that the inverse
function g−1 is C1. Now, by the Change of Variables Theorem,

∫
S
f exists if and only if

∫
U

(f ◦ g)|detDg|
exists, and that these integrals are equal in this case.∫

U

(f ◦ g)|detDg| =
∫
U

2x as computed above

=

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

2x|detDg|dxdydz

The second line follows from Fubini’s Theorem, and from the fact that the sloping surface is given by
x+ y + z = 1 so that when y, z are fixed, x can range from 0 to 1− y − z, and when z is fixed, y can range
from 0 to 1− z. Now,

|detDg| =
∣∣∣∣det

(
1 1
2 1

)
− det

(
2 1
3 2

)∣∣∣∣ = 2

Hence, ∫
U

(f ◦ g)|detDg| =
∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

4xdxdydz

=

∫ 1

0

∫ 1−z

0

4(1− y − z)2dydz

=

∫ 1

0

2

3
(y + z − 1)3|1−z0 dz

=

∫ 1

0

−2

3
(z − 1)3dz

=
−1

6
(z − 1)4|10

=
1

6

Problem 20.2. We say that a linear transformation h : Rn → Rn preserves volume if for every rectifiable
set S ⊂ Rn, we have that h(S) is rectifiable and that v(h(S)) = v(S). Now, consider the linear transformation
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g : Rn → Rn defined by g(x) =

 2 0
0 1/2

O2,(n−2)

O(n−2),2 In−2

x, where Op,q denotes the zero matrix of size p × q.

Then,

detDg = det

 2 0
0 1/2

O2,(n−2)

O(n−2),2 In−2


= 2 · 1

2
· 1n−2

= 1.

Hence, by Theorem 20.1, we have that g preserves n-dimensional volumes. Moreover, g is not an orthogonal
transformation, by definition, as its columns do not form an orthonormal basis in Rn. Hence, by Theorem
20.5b, g is not an isometry, as required.

Problem 21.3. Let h : Rn → Rn be the function h(x) = λx, and let P = P(x1, . . . , xk) be a k-dimensional
parallelopiped in Rn. We claim that v(h(P)) = |λ|kv(P).

Proof. Let X =
(
x1 x2 . . . xk

)
. Now, by definition of the volume of a k-dimensional parallelopiped in

Rn, we have that v(h(P)) =
∣∣det((λX)T (λX))

∣∣1/2 =
∣∣det(λ2XTX)

∣∣1/2. We now prove by induction that if
M is a m×m matrix, then det(cM) = cm detM . For the base case, when m = 1, det(cM) = cM = c1 detM ,
as M has only one entry. Now, suppose that the result holds for (m− 1)× (m− 1) matrices, and consider a
matrix M = (aij) of size m×m. Then by the determinant formula,

det cM =

m∑
i=1

(−1)i+1(cai1) det(cMi1) where each minor cMi1 is of size (m− 1)× (m− 1)

=

m∑
i=1

(−1)i+1(cai1)cm−1 detMi1 by the inductive hypothesis

= cm
m∑
i=1

(−1)i+1ai1 detMi1

= cm detM,

as required. Hence, since XTX defined above is a k × k matrix, we have,

v(h(P)) =
∣∣det(λ2XTX)

∣∣1/2
=
∣∣λ2k det(XTX)

∣∣1/2
= |λ|kv(P).

Problem 22.2. We claim that the desired integral is given by
∫
x∈A

√
1 +

∑k
i=1(∂if(x))2.

Proof. Since α is C1, then by the first definition in section 22 of Munkres we have that the volume of Yα is
defined as v(Yα) =

∫
A
V (Dα). Now, α(x) = (x, f(x)) = (i(x), f(x)) for all x ∈ A, where i is the identity

2



function. Hence, Dα =

(
Di
Df

)
=

(
Ik
Df

)
. So,

V (Dα) =
∣∣det(Dα)T (Dα))

∣∣1/2
=

∣∣∣∣det

((
ITk DfT

)
·
(
Ik
Df

))∣∣∣∣1/2
=
∣∣det

(
Ik DfTDf

)∣∣1/2
= |1 +DfDfT |1/2 by Dror’s hint, that det(In + vwT ) = 1 + vTw ∀v, w ∈ Rn

=

√√√√1 +

k∑
i=1

(∂if)2

Hence,

v(Yα) =

∫
A

V (Dα)

=

∫
x∈A

√√√√1 +

k∑
i=1

(∂if(x))2

Exercise 2.1. We are given the parametrization σ : U → R3 of an orientable surface, where U = (0, 1) ×
(0, π) and σ is defined by σ(u, v) = (u cos v, u sin v, v), for all (u, v) ∈ U . Since U is open in R2, and σ is C1,
then σ is a parametrized 2-manifold in R3. Now,

Dσ(u, v) =

cos v −u sin v
sin v u cos v

0 1

 .
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Hence, by a formula derived in lecture, the area A(σ(U)) is given by:

A(σ(U)) =

∫
U

|det(Dσ)T (Dσ)|1/2

=

∫
U

∣∣∣∣∣∣
(

cos v − sin v 0
−u sin v u cos v 1

)cos v −u sin v
sin v u cos v

0 1

∣∣∣∣∣∣
1/2

=

∫
U

∣∣∣∣(1 0
0 u2 + 1

)∣∣∣∣1/2
=

∫
(0,1)×(0,π)

√
u2 + 1

=

∫ π

0

∫ 1

0

√
u2 + 1 by Fubini.

= π

∫ π/4

0

sec3 θdθ by the substitution tan θ = u

= π

(
tan θ sec θ|π/40 −

∫ π/4

0

(sec2 θ − 1) sec θdθ

)
int. by parts with

u = sec θ, dv = sec2 θ

=⇒ 2

∫ π/4

0

sec3 θdθ = tan θ sec θ|π/40 +

∫ π/4

0

sec θdθ∫ π/4

0

sec3 θdθ =

√
2

2
− 0 +

1

2
ln(1 +

√
2)− 1

2
ln(1)

=
1√
2

+
1

2
ln(1 +

√
2).

Hence, the area is given by:

A(σ(U)) =
π√
2

+
π

2
ln(1 +

√
2).
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