This is the solution I gave (in assignment 3) for problem 10 in section 2.3. This is a rewritten version, and all suggestions and comments are welcome. Problem. Suppose a map is made by drawing n intersecting circles. Show that the regions in this map can be properly 2-colored.

We claim that by assigning colors based on the number of circles that contain a region, the regions in the given map can be 2-colored.

Definition 1. Given a map made by drawing n intersecting circles, we define the "vertices" to be all points of intersection of the n circles, and the "edges" to be all arcs (of the n circles) whose endpoints are two "vertices".

Definition 2. The boundary of a region is a set of edges bounding the region. Two different regions are said to be adjacent if there is a common edge in their boundaries.

Lemma. For each region r in the map, let $\mathrm{f}(\mathrm{r})$ be the number of circles that contain r. If x, y are adjacent, then

$$
|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=1
$$

Proof. For each pair of adjacent regions x, y, there is a common edge $e \in \mathcal{C}$ in their boundaries, where \mathcal{C} is a circle. Notice that the map is planar, so any two regions do not overlap, meaning that \mathcal{C} contains exactly one of x, y. Without loss of generality, we may assume that \mathcal{C} contains x . We claim that \mathcal{C} is the only circle containing x that does not contain y .

Figure 1.1. x, y are adjacent.
Indeed, assume that \mathcal{D} is a circle that contains x but does not contain y , and that $\mathcal{D} \neq \mathcal{C}$. The planarity of the map implies that a point on any of the n circles cannot be an interior point of any region. Therefore $\operatorname{Int}(d) \notin$ y for all arc d of \mathcal{D}, where $\operatorname{Int}(d)$ denotes the interior of d, (otherwise if $\operatorname{Int}(\mathcal{g}) \in y$ for some arc \mathfrak{g} of \mathcal{D}, then any interior point of g will be an interior point of y$)$, meaning that \mathcal{D} must contain y , contradicting the definition of \mathcal{D}.

Figure 1.2. Int $(d) \in y$ leads to a contradiction.

Figure 1.3. \mathcal{D} contains y.

Consequently, every circle other than \mathcal{C} that contains x must contain y . Likewise, if \mathcal{C} contains y but does not contain x , we know by the same reasoning that every circle other than \mathcal{C} that contains y must contain x . Therefore the number of circles that contain x and the number of circles that contain y differ by 1, i.e.

$$
|\mathrm{f}(\mathrm{x})-f(y)|=1
$$

completing the proof of lemma.

Assume that we are given two colors that are labeled 1,2 respectively.
Consider a region r in the map. If $\mathrm{f}(\mathrm{r})$ is odd, we color r with 1.
Otherwise color r with 2. Using the lemma, we know that the coloring above is legitimate, and we are done.

