Math 327 Homework 8

Exercise 1. (Munkres, #2, p. 223) If instead of dividing the interval [—r, r] into three equal pieces,
we instead divided into pieces [r, —qr],[—qr. qr], [qr, 1], 0 < a < 1, for what values of q does the proof
of the Tietze theorem go through?

| claim that any g < 1/2 works. It's a bit tedious to check in full, but what we need is

lg(a) — f(a)| < r/k,Vae A

where k > 1, so that the resulting geometric series will converge (see text). The bound on |g(a) —f(a)]
is obtained by considering the case where a lies in each of the three preimages (under f) of our three
subintervals. The “worst case” occurs when a ¢ B U C (see text); then the only bound we can get is
lg(a) — f(a)| < 2q, so we need 2qg < 1.

Exercise 2. (Munkres, #5a, p. 223) A space is said to have the universal extension property if for each
triple consisting of a normal space X, a closed subset A of X, and a continuous function f : A —Y,
there exists an extension of f to a continuous map of X intoY. Show R’ has the universal extension
property.

Given any such tuple (X, A, f : A — RY), we may, by Tietze's Theorem, extend each coordinate
of f,say f, : A— R,a € J, to a continuous map f. : X — R. Reassembling these maps in the
obvious way, we get a map ' : X — R’ which agrees with f on A and is continuous by definition of
the product topology.

Exercise 3. (Munkres, #1, p. 270) Let X be metric and suppose there exists ¢ > 0 such that every
e-ball in X has compact closure. Then X is complete, but it is not true that we can reverse the order
of the V and 3 quantifiers in the above statement.

Let {x,} be a Cauchy sequence in X. This sequence eventually lies inside some e-ball (this is
obvious from the definition of Cauchy sequence), hence inside its closure, which is compact. Hence
{x,} eventually lies inside a compact, hence complete, space, and so converges, say to x € X.

Let X = (0, 1), which is certainly not complete, but it’s clear that given any x € X we can find ¢
such that B, (x) is compact.

Exercise 4. (Munkres, #4, p. 270) Show that the metric space (X, d) is complete iff for every nested
sequence A1 D A, D ... of nonempty closed sets of X with diamA, — 0, the intersection of all the
A, is nonempty.

Suppose first that X is complete. Construct {x,} by taking x,, € A,; it's clear that this is a Cauchy
sequence. Writing x, — x, we see that x € A, for every A, (or {x,} could not converge to x), so
X € NA,.

Conversely, let {x;} be a Cauchy sequence. Define A, = {x; 22, these sets clearly satisfy the above
hypotheses, so we may produce x € NA,. Then {x;} has a subsequence converging to x, so converges
to x itself (by a lemma on Cauchy sequences).

Exercise 5. (Munkres, #5, p. 270) A map f : X — X is a contraction map if there exists o < 1
such that d(f(x), f(y)) < ad(x,y) for all x,y € X. If f is a contraction of a complete metric space,
then f has a unique fixed point.

Uniqueness is clear: if f(x) = x,f(y) = y for distinct x,y, then d(x,y) = d(f(x),f(y)) <
ad(x,y) < d(x,y), a contradiction. To show existence, we'll apply f repeatedly to some point to
generate a sequence which gets arbitrarily close to a fixed point. Fix any x € X. To show the sequence
{x,} given by x, = f"(x) is Cauchy, first note

d(f7(x), F7H(x) < ad(f"1(x), F7(x)) < ... < a”d(x, f(x)).



Then, assuming n > M,

d(f"(x), F(x)) < d(f" (). F"7H(x)) + ...+ d(FTH(x), £(x))
<a"d(x, f(x) + ...+ aMd(x, (x))

< (@M + Mt + )d(x, f(x))
aM
= md(X, f(X)) —>0as M — oo.
This can easily be shown to imply that {x,} is Cauchy and so converges, say to x € X. To show x is the
desired fixed point, note that f is a-Lipschitz, hence (uniformly) continuous, so f(x) = lim,_,s f(x,) =
lim x,4+1 = x. Alternately,

d(x, f(x)) < d(x,xm) + d(Xm, f(xm)) + d(f(xm), F(x))
< 2d(x, Xm) + d(Xm, f(Xm)).

Since the right hand side can be made as small as we like, it must be that d(f(x),x) = 0.

Exercise 6. (Munkres, #1, p. 280) A countable product of totally bounded metric spaces is totally
bounded; a countable product of compact metric spaces is compact, and this result does not depend
on Tychonoff's Theorem (hence doesn't depend on the Axiom of Choice).

Let X = J],enXn where each X, is totally bounded. Recall that D(x,y) = sup{di(x yi)/i}
is a metric for the product space. Fix ¢ > 0. Choose N large enough that i > N implies 1/i <
€/2. Let {Xam}nen m<k, be, for each n, a finite set of points such that for all x, € X, there ex-
ists X,m such that d,(x,, X,m) < €. Then it's clear that for any x € X there exists some Yy =
(X1my» X2mp s+ -+ Xnmy»0,0,0,...) € [T en mes, 1Xam} X 0 x 0 x ... such that D(x, ;) < €, and that only
finitely many such y; exist. In other words, X is totally bounded.

Completeness is already done (essentially we repeat the proof of Theorem 43.4). Hence a countable
product of compact metric spaces is compact.

Exercise 7. “Problem IX.” Show, without Urysohn's Lemma, that every metric space (X, d) can be
embedded in a cube 1. (Hint: given x € X, what real-valued function on X comes to mind?)

If X is empty, there is nothing to show. Otherwise, the obvious function is £, : X —» [0, 1] given
by fi(y) = d(x,y).

This map is clearly continuous; it is injective since f(x) vanishes exactly in the xth coordinate. All
that remains to show is continuity of the inverse function =1 : [0, 1]X — X. Fix any basic open set
Be(x) C X. If € > 1, this ball is all of X, so any neighbourhood of f=!(x,) has image (under f~1)
contained in that ball. If € < 1, consider the neighbourhood U = m, }([0, €)) N f(X), which is open in
[0, 1]% (as Ty, : [0, 1] — [0, 1] is continuous) and contains f(xp). Now, if x € U, then f,(x) < ¢, so
x € Be(xg). Thus for arbitrary basic B.(xy) we've found U 3 xg such that f~1(U) C B<(xg), and we're
done.



