
Math 327 Homework 8

Exercise 1. (Munkres, #2, p. 223) If instead of dividing the interval [�r; r ] into three equal pieces,

we instead divided into pieces [r;�qr ]; [�qr; qr ]; [qr; r ]; 0 < a < 1, for what values of q does the proof

of the Tietze theorem go through?

I claim that any q < 1=2 works. It's a bit tedious to check in full, but what we need is

jg(a)� f (a)j � r=k;8a 2 A

where k > 1, so that the resulting geometric series will converge (see text). The bound on jg(a)�f (a)j

is obtained by considering the case where a lies in each of the three preimages (under f ) of our three

subintervals. The \worst case" occurs when a =2 B [ C (see text); then the only bound we can get is

jg(a)� f (a)j < 2q, so we need 2q < 1.

Exercise 2. (Munkres, #5a, p. 223) A space is said to have the universal extension property if for each

triple consisting of a normal space X, a closed subset A of X, and a continuous function f : A �! Y ,

there exists an extension of f to a continuous map of X into Y . Show RJ has the universal extension

property.

Given any such tuple (X;A; f : A �! RJ), we may, by Tietze's Theorem, extend each coordinate

of f , say f� : A �! R; � 2 J; to a continuous map f 0� : X �! R. Reassembling these maps in the

obvious way, we get a map f 0 : X �! RJ which agrees with f on A and is continuous by de�nition of

the product topology.

Exercise 3. (Munkres, #1, p. 270) Let X be metric and suppose there exists � > 0 such that every

�-ball in X has compact closure. Then X is complete, but it is not true that we can reverse the order

of the 8 and 9 quanti�ers in the above statement.

Let fxng be a Cauchy sequence in X. This sequence eventually lies inside some �-ball (this is

obvious from the de�nition of Cauchy sequence), hence inside its closure, which is compact. Hence

fxng eventually lies inside a compact, hence complete, space, and so converges, say to x 2 X.

Let X = (0; 1), which is certainly not complete, but it's clear that given any x 2 X we can �nd �x
such that B�x (x) is compact.

Exercise 4. (Munkres, #4, p. 270) Show that the metric space (X; d) is complete i� for every nested

sequence A1 � A2 � ::: of nonempty closed sets of X with diamAn �! 0, the intersection of all the

An is nonempty.

Suppose �rst that X is complete. Construct fxng by taking xn 2 An; it's clear that this is a Cauchy

sequence. Writing xn �! x , we see that x 2 An for every An (or fxng could not converge to x), so

x 2 \An.

Conversely, let fxjg be a Cauchy sequence. De�ne An = fxjg
1
j=n

; these sets clearly satisfy the above

hypotheses, so we may produce x 2 \An. Then fxjg has a subsequence converging to x , so converges

to x itself (by a lemma on Cauchy sequences).

Exercise 5. (Munkres, #5, p. 270) A map f : X �! X is a contraction map if there exists � < 1

such that d(f (x); f (y)) � �d(x; y) for all x; y 2 X. If f is a contraction of a complete metric space,

then f has a unique �xed point.

Uniqueness is clear: if f (x) = x; f (y) = y for distinct x; y , then d(x; y) = d(f (x); f (y)) �

�d(x; y) < d(x; y), a contradiction. To show existence, we'll apply f repeatedly to some point to

generate a sequence which gets arbitrarily close to a �xed point. Fix any x 2 X. To show the sequence

fxng given by xn = f n(x) is Cauchy, �rst note

d(f m(x); f m+1(x)) � �d(f m�1(x); f m(x)) � : : : � �md(x; f (x)):
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Then, assuming n > M,

d(f n(x); f M(x)) � d(f n(x); f n�1(x)) + : : :+ d(f M+1(x); f M(x))

� �n�1d(x; f (x)) + : : :+ �Md(x; f (x))

� (�M + �M+1 + : : :)d(x; f (x))

=
�M

1� �
d(x; f (x)) �! 0 as M �!1:

This can easily be shown to imply that fxng is Cauchy and so converges, say to x 2 X. To show x is the

desired �xed point, note that f is �-Lipschitz, hence (uniformly) continuous, so f (x) = limn!1 f (xn) =

lim xn+1 = x . Alternately,

d(x; f (x)) � d(x; xm) + d(xm; f (xm)) + d(f (xm); f (x))

� 2d(x; xm) + d(xm; f (xm)):

Since the right hand side can be made as small as we like, it must be that d(f (x); x) = 0.

Exercise 6. (Munkres, #1, p. 280) A countable product of totally bounded metric spaces is totally

bounded; a countable product of compact metric spaces is compact, and this result does not depend

on Tychono�'s Theorem (hence doesn't depend on the Axiom of Choice).

Let X =
∏

n2NXn where each Xn is totally bounded. Recall that D(x; y) = supf �di(xi ; yi)=ig

is a metric for the product space. Fix � > 0. Choose N large enough that i � N implies 1=i <

�=2. Let fxnmgn2N;m�kn be, for each n, a �nite set of points such that for all xn 2 Xn there ex-

ists xnm such that �dn(xn; xnm) < �. Then it's clear that for any x 2 X there exists some yj =

(x1m1
; x2m2

; : : : ; xnmn
; 0; 0; 0; : : :) 2

∏
n2N;m�kn

fxnmg�0�0� : : : such that D(x; yj) < �, and that only

�nitely many such yj exist. In other words, X is totally bounded.

Completeness is already done (essentially we repeat the proof of Theorem 43.4). Hence a countable

product of compact metric spaces is compact.

Exercise 7. \Problem IX." Show, without Urysohn's Lemma, that every metric space (X; d) can be

embedded in a cube IX . (Hint: given x 2 X, what real-valued function on X comes to mind?)

If X is empty, there is nothing to show. Otherwise, the obvious function is fx : X �! [0; 1] given

by fx(y) = ~d(x; y).

This map is clearly continuous; it is injective since f (x) vanishes exactly in the xth coordinate. All

that remains to show is continuity of the inverse function f �1 : [0; 1]X �! X. Fix any basic open set

B�(x0) � X. If � > 1, this ball is all of X, so any neighbourhood of f �1(xo) has image (under f �1)

contained in that ball. If � � 1, consider the neighbourhood U = ��1xo ([0; �)) \ f (X), which is open in

[0; 1]X (as �x0 : [0; 1]
X �! [0; 1] is continuous) and contains f (x0). Now, if x 2 U, then fx0(x) < �, so

x 2 B�(x0). Thus for arbitrary basic B�(x0) we've found U 3 x0 such that f �1(U) � B�(x0), and we're

done.
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