Math 327 Homework 8

Exercise 1. (Munkres, \#2, p. 223) If instead of dividing the interval $[-r, r]$ into three equal pieces, we instead divided into pieces $[r,-q r],[-q r, q r],[q r, r], 0<a<1$, for what values of q does the proof of the Tietze theorem go through?

I claim that any $q<1 / 2$ works. It's a bit tedious to check in full, but what we need is

$$
|g(a)-f(a)| \leq r / k_{2}, \forall a \in A
$$

where $k_{2}<1$, so that the resulting geometric series will converge (see text). The bound on $|g(a)-f(a)|$ is obtained by considering the case where a lies in each of the three preimages (under f) of our three subintervals. The "worst case" occurs when a $\notin B \cup C$ (see text); then the only bound we can get is $|g(a)-f(a)|<2 q$, so we need $2 q<1$.

Exercise 2. (Munkres, \#5a, p. 223) A space is said to have the universal extension property if for each triple consisting of a normal space X, a closed subset A of X, and a continuous function $f: A \longrightarrow Y$, there exists an extension of f to a continuous map of X into Y. Show \mathbb{R}^{J} has the universal extension property.

Given any such tuple ($X, A, f: A \longrightarrow \mathbb{R}^{J}$), we may, by Tietze's Theorem, extend each coordinate of f, say $f_{\alpha}: A \longrightarrow \mathbb{R}, \alpha \in J$, to a continuous map $f_{\alpha}^{\prime}: X \longrightarrow \mathbb{R}$. Reassembling these maps in the obvious way, we get a map $f^{\prime}: X \longrightarrow \mathbb{R}^{J}$ which agrees with f on A and is continuous by definition of the product topology.

Exercise 3. (Munkres, \#1, p. 270) Let X be metric and suppose there exists $\epsilon>0$ such that every ϵ-ball in X has compact closure. Then X is complete, but it is not true that we can reverse the order of the \forall and \exists quantifiers in the above statement.

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X. This sequence eventually lies inside some ϵ-ball (this is obvious from the definition of Cauchy sequence), hence inside its closure, which is compact. Hence $\left\{x_{n}\right\}$ eventually lies inside a compact, hence complete, space, and so converges, say to $x \in X$.

Let $X=(0,1)$, which is certainly not complete, but it's clear that given any $x \in X$ we can find ϵ_{X} such that $\overline{B_{\epsilon_{x}}(x)}$ is compact.

Exercise 4. (Munkres, \#4, p. 270) Show that the metric space (X, d) is complete iff for every nested sequence $A_{1} \supseteq A_{2} \supseteq \ldots$ of nonempty closed sets of X with diam $A_{n} \longrightarrow 0$, the intersection of all the A_{n} is nonempty.

Suppose first that X is complete. Construct $\left\{x_{n}\right\}$ by taking $x_{n} \in A_{n}$; it's clear that this is a Cauchy sequence. Writing $x_{n} \longrightarrow x$, we see that $x \in A_{n}$ for every A_{n} (or $\left\{x_{n}\right\}$ could not converge to x), so $x \in \cap A_{n}$.

Conversely, let $\left\{x_{j}\right\}$ be a Cauchy sequence. Define $A_{n}=\overline{\left\{x_{j}\right\}_{j=n}^{\infty}}$; these sets clearly satisfy the above hypotheses, so we may produce $x \in \cap A_{n}$. Then $\left\{x_{j}\right\}$ has a subsequence converging to x, so converges to x itself (by a lemma on Cauchy sequences).

Exercise 5. (Munkres, \#5, p. 270) A map $f: X \longrightarrow X$ is a contraction map if there exists $\alpha<1$ such that $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in X$. If f is a contraction of a complete metric space, then f has a unique fixed point.

Uniqueness is clear: if $f(x)=x, f(y)=y$ for distinct x, y, then $d(x, y)=d(f(x), f(y)) \leq$ $\alpha d(x, y)<d(x, y)$, a contradiction. To show existence, we'll apply f repeatedly to some point to generate a sequence which gets arbitrarily close to a fixed point. Fix any $x \in X$. To show the sequence $\left\{x_{n}\right\}$ given by $x_{n}=f^{n}(x)$ is Cauchy, first note

$$
d\left(f^{m}(x), f^{m+1}(x)\right) \leq \alpha d\left(f^{m-1}(x), f^{m}(x)\right) \leq \ldots \leq \alpha^{m} d(x, f(x))
$$

Then, assuming $n>M$,

$$
\begin{aligned}
d\left(f^{n}(x), f^{M}(x)\right) & \leq d\left(f^{n}(x), f^{n-1}(x)\right)+\ldots+d\left(f^{M+1}(x), f^{M}(x)\right) \\
& \leq \alpha^{n-1} d(x, f(x))+\ldots+\alpha^{M} d(x, f(x)) \\
& \leq\left(\alpha^{M}+\alpha^{M+1}+\ldots\right) d(x, f(x)) \\
& =\frac{\alpha^{M}}{1-\alpha} d(x, f(x)) \longrightarrow 0 \text { as } M \longrightarrow \infty
\end{aligned}
$$

This can easily be shown to imply that $\left\{x_{n}\right\}$ is Cauchy and so converges, say to $x \in X$. To show x is the desired fixed point, note that f is α-Lipschitz, hence (uniformly) continuous, so $f(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $\lim x_{n+1}=x$. Alternately,

$$
\begin{aligned}
d(x, f(x)) & \leq d\left(x, x_{m}\right)+d\left(x_{m}, f\left(x_{m}\right)\right)+d\left(f\left(x_{m}\right), f(x)\right) \\
& \leq 2 d\left(x, x_{m}\right)+d\left(x_{m}, f\left(x_{m}\right)\right)
\end{aligned}
$$

Since the right hand side can be made as small as we like, it must be that $d(f(x), x)=0$.
Exercise 6. (Munkres, \#1, p. 280) A countable product of totally bounded metric spaces is totally bounded; a countable product of compact metric spaces is compact, and this result does not depend on Tychonoff's Theorem (hence doesn't depend on the Axiom of Choice).

Let $X=\prod_{n \in \mathbb{N}} X_{n}$ where each X_{n} is totally bounded. Recall that $D(x, y)=\sup \left\{\bar{d}_{i}\left(x_{i}, y_{i}\right) / i\right\}$ is a metric for the product space. Fix $\epsilon>0$. Choose N large enough that $i \geq N$ implies $1 / i<$ $\epsilon / 2$. Let $\left\{x_{n m}\right\}_{n \in \mathbb{N}, m \leq k_{n}}$ be, for each n, a finite set of points such that for all $x_{n} \in X_{n}$ there exists $x_{n m}$ such that $\bar{d}_{n}\left(x_{n}, x_{n m}\right)<\epsilon$. Then it's clear that for any $x \in X$ there exists some $y_{j}=$ $\left(x_{1 m_{1}}, x_{2 m_{2}}, \ldots, x_{n m_{n}}, 0,0,0, \ldots\right) \in \prod_{n \in N, m \leq k_{n}}\left\{x_{n m}\right\} \times 0 \times 0 \times \ldots$ such that $D\left(x, y_{j}\right)<\epsilon$, and that only finitely many such y_{j} exist. In other words, X is totally bounded.

Completeness is already done (essentially we repeat the proof of Theorem 43.4). Hence a countable product of compact metric spaces is compact.

Exercise 7. "Problem IX." Show, without Urysohn's Lemma, that every metric space (X, d) can be embedded in a cube I^{X}. (Hint: given $x \in X$, what real-valued function on X comes to mind?)

If X is empty, there is nothing to show. Otherwise, the obvious function is $f_{x}: X \longrightarrow[0,1]$ given by $f_{x}(y)=\tilde{d}(x, y)$.

This map is clearly continuous; it is injective since $f(x)$ vanishes exactly in the x th coordinate. All that remains to show is continuity of the inverse function $f^{-1}:[0,1]^{X} \longrightarrow X$. Fix any basic open set $B_{\epsilon}\left(x_{0}\right) \subset X$. If $\epsilon>1$, this ball is all of X, so any neighbourhood of $f^{-1}\left(x_{o}\right)$ has image (under f^{-1}) contained in that ball. If $\epsilon \leq 1$, consider the neighbourhood $U=\pi_{x_{0}}^{-1}([0, \epsilon)) \cap f(X)$, which is open in $[0,1]^{X}$ (as $\pi_{x_{0}}:[0,1]^{X} \longrightarrow[0,1]$ is continuous) and contains $f\left(x_{0}\right)$. Now, if $x \in U$, then $f_{x_{0}}(x)<\epsilon$, so $x \in B_{\epsilon}\left(x_{0}\right)$. Thus for arbitrary basic $B_{\epsilon}\left(x_{0}\right)$ we've found $U \ni x_{0}$ such that $f^{-1}(U) \subset B_{\epsilon}\left(x_{0}\right)$, and we're done.

