Exercise 1. (Munkres, #2, p. 223) If instead of dividing the interval [-r, r] into three equal pieces, we instead divided into pieces [r, -qr], [-qr, qr], [qr, r], 0 < a < 1, for what values of q does the proof of the Tietze theorem go through?

I claim that any q < 1/2 works. It's a bit tedious to check in full, but what we need is

$$|g(a) - f(a)| \le r/k_2, \forall a \in A$$

where $k_2 < 1$, so that the resulting geometric series will converge (see text). The bound on |g(a) - f(a)| is obtained by considering the case where a lies in each of the three preimages (under f) of our three subintervals. The "worst case" occurs when $a \notin B \cup C$ (see text); then the only bound we can get is |g(a) - f(a)| < 2q, so we need 2q < 1.

Exercise 2. (Munkres, #5a, p. 223) A space is said to have the universal extension property if for each triple consisting of a normal space X, a closed subset A of X, and a continuous function $f: A \longrightarrow Y$, there exists an extension of f to a continuous map of X into Y. Show \mathbb{R}^J has the universal extension property

Given any such tuple $(X, A, f: A \longrightarrow \mathbb{R}^J)$, we may, by Tietze's Theorem, extend each coordinate of f, say $f_\alpha: A \longrightarrow \mathbb{R}$, $\alpha \in J$, to a continuous map $f'_\alpha: X \longrightarrow \mathbb{R}$. Reassembling these maps in the obvious way, we get a map $f': X \longrightarrow \mathbb{R}^J$ which agrees with f on A and is continuous by definition of the product topology.

Exercise 3. (Munkres, #1, p. 270) Let X be metric and suppose there exists $\epsilon > 0$ such that every ϵ -ball in X has compact closure. Then X is complete, but it is not true that we can reverse the order of the \forall and \exists quantifiers in the above statement.

Let $\{x_n\}$ be a Cauchy sequence in X. This sequence eventually lies inside some ϵ -ball (this is obvious from the definition of Cauchy sequence), hence inside its closure, which is compact. Hence $\{x_n\}$ eventually lies inside a compact, hence complete, space, and so converges, say to $x \in X$.

Let X = (0, 1), which is certainly not complete, but it's clear that given any $x \in X$ we can find ϵ_x such that $\overline{B_{\epsilon_x}(x)}$ is compact.

Exercise 4. (Munkres, #4, p. 270) Show that the metric space (X, d) is complete iff for every nested sequence $A_1 \supseteq A_2 \supseteq ...$ of nonempty closed sets of X with diam $A_n \longrightarrow 0$, the intersection of all the A_n is nonempty.

Suppose first that X is complete. Construct $\{x_n\}$ by taking $x_n \in A_n$; it's clear that this is a Cauchy sequence. Writing $x_n \longrightarrow x$, we see that $x \in A_n$ for every A_n (or $\{x_n\}$ could not converge to x), so $x \in \cap A_n$.

Conversely, let $\{x_j\}$ be a Cauchy sequence. Define $A_n = \overline{\{x_j\}_{j=n}^{\infty}}$; these sets clearly satisfy the above hypotheses, so we may produce $x \in \cap A_n$. Then $\{x_j\}$ has a subsequence converging to x, so converges to x itself (by a lemma on Cauchy sequences).

Exercise 5. (Munkres, #5, p. 270) A map $f: X \longrightarrow X$ is a contraction map if there exists $\alpha < 1$ such that $d(f(x), f(y)) \le \alpha d(x, y)$ for all $x, y \in X$. If f is a contraction of a complete metric space, then f has a unique fixed point.

Uniqueness is clear: if f(x) = x, f(y) = y for distinct x, y, then $d(x, y) = d(f(x), f(y)) \le \alpha d(x, y) < d(x, y)$, a contradiction. To show existence, we'll apply f repeatedly to some point to generate a sequence which gets arbitrarily close to a fixed point. Fix any $x \in X$. To show the sequence $\{x_n\}$ given by $x_n = f^n(x)$ is Cauchy, first note

$$d(f^{m}(x), f^{m+1}(x)) \le \alpha d(f^{m-1}(x), f^{m}(x)) \le \ldots \le \alpha^{m} d(x, f(x)).$$

Then, assuming n > M,

$$d(f^{n}(x), f^{M}(x)) \leq d(f^{n}(x), f^{n-1}(x)) + \dots + d(f^{M+1}(x), f^{M}(x))$$

$$\leq \alpha^{n-1}d(x, f(x)) + \dots + \alpha^{M}d(x, f(x))$$

$$\leq (\alpha^{M} + \alpha^{M+1} + \dots)d(x, f(x))$$

$$= \frac{\alpha^{M}}{1 - \alpha}d(x, f(x)) \longrightarrow 0 \text{ as } M \longrightarrow \infty.$$

This can easily be shown to imply that $\{x_n\}$ is Cauchy and so converges, say to $x \in X$. To show x is the desired fixed point, note that f is α -Lipschitz, hence (uniformly) continuous, so $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x_n)$

$$d(x, f(x)) \le d(x, x_m) + d(x_m, f(x_m)) + d(f(x_m), f(x))$$

$$\le 2d(x, x_m) + d(x_m, f(x_m)).$$

Since the right hand side can be made as small as we like, it must be that d(f(x), x) = 0.

Exercise 6. (Munkres, #1, p. 280) A countable product of totally bounded metric spaces is totally bounded; a countable product of compact metric spaces is compact, and this result does not depend on Tychonoff's Theorem (hence doesn't depend on the Axiom of Choice).

Let $X=\prod_{n\in\mathbb{N}}X_n$ where each X_n is totally bounded. Recall that $D(x,y)=\sup\{\bar{d}_i(x_i,y_i)/i\}$ is a metric for the product space. Fix $\epsilon>0$. Choose N large enough that $i\geq N$ implies $1/i<\epsilon/2$. Let $\{x_{nm}\}_{n\in\mathbb{N},m\leq k_n}$ be, for each n, a finite set of points such that for all $x_n\in X_n$ there exists x_{nm} such that $\bar{d}_n(x_n,x_{nm})<\epsilon$. Then it's clear that for any $x\in X$ there exists some $y_j=(x_1m_1,x_2m_2,\ldots,x_{nm_n},0,0,0,\ldots)\in\prod_{n\in N,m\leq k_n}\{x_{nm}\}\times0\times0\times\ldots$ such that $D(x,y_j)<\epsilon$, and that only finitely many such y_j exist. In other words, X is totally bounded.

Completeness is already done (essentially we repeat the proof of Theorem 43.4). Hence a countable product of compact metric spaces is compact.

Exercise 7. "Problem IX." Show, without Urysohn's Lemma, that every metric space (X, d) can be embedded in a cube I^X . (Hint: given $x \in X$, what real-valued function on X comes to mind?)

If X is empty, there is nothing to show. Otherwise, the obvious function is $f_x: X \longrightarrow [0,1]$ given by $f_x(y) = \tilde{d}(x,y)$.

This map is clearly continuous; it is injective since f(x) vanishes exactly in the xth coordinate. All that remains to show is continuity of the inverse function $f^{-1}:[0,1]^X\longrightarrow X$. Fix any basic open set $B_\epsilon(x_0)\subset X$. If $\epsilon>1$, this ball is all of X, so any neighbourhood of $f^{-1}(x_0)$ has image (under f^{-1}) contained in that ball. If $\epsilon\leq 1$, consider the neighbourhood $U=\pi_{x_0}^{-1}([0,\epsilon))\cap f(X)$, which is open in $[0,1]^X$ (as $\pi_{x_0}:[0,1]^X\longrightarrow [0,1]$ is continuous) and contains $f(x_0)$. Now, if $x\in U$, then $f_{x_0}(x)<\epsilon$, so $x\in B_\epsilon(x_0)$. Thus for arbitrary basic $B_\epsilon(x_0)$ we've found $U\ni x_0$ such that $f^{-1}(U)\subset B_\epsilon(x_0)$, and we're done.