Notation:

1. $\forall a$ - is read "for all a"
2. $\exists a$ - is read "there exists some a"
3. $a \in B$ - is read " a in B "

Definition-A field is a set, F , with two binary operations addition , + , and multiplication, X , and two distinct special elements zero, 0 , and one, 1 . Such that the following properties hold :

F1.Commutative Property - $\forall a, b \in F$ it follows that $a+b=b+a$ and $a \times b=b \times a$.
F2.Associative Property - $\forall a, b, c \in F$ it follows that $(a+b)+c=a+(b+c)$ and $(a \times b) \times c=a \times(b \times c)$.
F3.Additive Identity - $\forall a \in F$ it follows that $a+0=a$ Multiplicative Identity - $\forall a \in F$ it follows that $a \times 1=a$
F4.Existence of Multiplicative Inverse - $\forall a \neq 0 \in F \quad \exists b \in F$ s.t. $a \times b=1$.
Existence of Additive Inverse - $\forall a \in F \quad \exists b \in F$ s.t. $a-b=0$.
F5.Distributive Property - $\forall a, b, c \in F \quad$ it follows that $\quad a \times(b+c)=a \times b+a \times c$
Note that as a result the following holds $\quad \forall a, b \in F \quad(a-b)(a+b)=a^{2}-b^{2}$.
However the existence of a square root, which can be written as follows, cannot be inferred from these properties alone. $\forall a \in F \exists b \in F$ such that $a=x^{2}$ or $-a=x^{2}$

Examples of Fields

1. \mathbb{R} - the real numbers.
2. $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}\right\}$ - the set of rational numbers
3. The set of Integers $\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4 \ldots\}$ is not a field as $F 4$ does not hold, e.g. given $a=3 \in \mathbb{Z}$ there is no $b \in Z$ such that $a \times b=1$, in \mathbb{R} $\mathrm{b}=\quad b=\frac{1}{3}$ but $\frac{1}{3} \notin \mathbb{Z}$.
4. $F=\{0,1\}$ the operations + and x are defined by:

$$
\begin{array}{c|c|c|c|c|c}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array} \quad \begin{array}{|c|c|c}
\mathrm{x} & 0 & 1 \\
\hline 0 & 0 & 0 \\
\hline 1 & 0 & 1
\end{array}
$$

It is necessary to test every possible case for each of the field properties, for example :
F1. $a+b=b+a$ one must test 4 times for ever possible value of a and b .
5. $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$ - the complex numbers

Theorem: $\quad \forall a, b \in F \quad(a+b)(a-b)=a^{2}-b^{2}$
In order to prove the above theorem one must first prove the below lemma:
Lemma - I. $\forall a \in F, a$ has a unique negative
Precisely $a+b_{1}=0, a+b_{2}=0$ it follows that $b_{1}=b_{2}$
II. $\forall a \neq 0 \in F, a$ has a unique inverse.

Precisely $\quad a \neq 0, a \times b_{1}=1, a \times b_{2}=1 \quad$ it follows that $\quad b_{1}=b_{2}$
Proof of Part II:
Suppose $a \neq 0, a b_{1}=1=a b_{2}$
Take any c such that $c a=1$ (Exists by F4)

$$
\begin{aligned}
& c\left(a b_{1}\right)=c\left(a b_{2}\right) \\
& (c a) b_{1}=(c a) b_{2} \quad(\text { by property F2 }) \\
& 1 \times b_{1}=1 \times b_{2} \quad(\text { by choice of } \mathrm{c}) \\
& b_{1}=b_{2} \quad(\text { by F3 })
\end{aligned}
$$

For practice prove part I.
Definition: $\forall a \in F$ define $-a$ to be the b for which $a+b=0$, therefore $a+(-a)=0$
Likewise $\forall a \in F$ define a^{-1} to be the b for which $a \times b=1$ therefore $a \times a^{-1}=1$.
Definition: $a-b:=a+(-b)$ and $\frac{a}{b}:=a \times b^{-1}$ and $a^{2}:=a \times a$.
Lemma: $\forall a, b \quad a \times(-b)=-a b$, prove for practice.
Proof of the main theorem:
$(a-b)(a+b)=(a+(-b))(a+b)=($ by definition $)$
$a(a+b)+(-b)(a+b)=($ by property F5)
$(a \times a+a \times b)+((-b) \times a+(-b) \times b)=($ by property F5)
$\left(a^{2}+a b\right)+((-b) \times a+(-b) \times b)=($ by definition $)$
$\left(a^{2}+a b\right)+(-a b+(-b \times b))=($ by above lemma $)$
$\left(a^{2}+a b\right)+\left(-a b+\left(-b^{2}\right)\right)=($ by above lemma $)$
$a^{2}+\left(a b+\left(-a b+\left(-b^{2}\right)\right)\right)=($ by property F 2$)$
$a^{2}+\left((a b+-a b)-b^{2}\right)=($ by property F2)
$a^{2}+\left((0)+\left(-b^{2}\right)\right) \quad$ (by above lemma and definition)
$a^{2}+-\left(b^{2}\right)=($ by property F3)
$a^{2}-b^{2}$ (by definition)

