Notation:

- 1. $\forall a$ is read "for all a"
- 2. $\exists a$ is read "there exists some a"
- 3. $a \in B$ is read "a in B"

Definition-A field is a set, F, with two binary operations addition, +, and multiplication, X, and two distinct special elements zero, 0, and one, 1. Such that the following properties hold :

- F1.Commutative Property $\forall a, b \in F$ it follows that a+b=b+a and $a \times b=b \times a$.
- F2.Associative Property $\forall a, b, c \in F$ it follows that (a+b)+c=a+(b+c) and $(a \times b) \times c = a \times (b \times c)$.
- F3.Additive Identity $\forall a \in F$ it follows that a+0=aMultiplicative Identity - $\forall a \in F$ it follows that $a \times 1=a$
- F4.Existence of Multiplicative Inverse $\forall a \neq 0 \in F \quad \exists b \in F \text{ s.t. } a \times b = 1$. Existence of Additive Inverse - $\forall a \in F \quad \exists b \in F \text{ s.t. } a - b = 0$.
- F5.Distributive Property $\forall a, b, c \in F$ it follows that $a \times (b+c) = a \times b + a \times c$

Note that as a result the following holds $\forall a, b \in F$ $(a-b)(a+b)=a^2-b^2$.

However the existence of a square root, which can be written as follows, cannot be inferred from these properties alone. $\forall a \in F \exists b \in F$ such that $a = x^2$ or $-a = x^2$

Examples of Fields

- 1. \mathbb{R} the real numbers.
- 2. $\mathbb{Q} = \{\frac{m}{n} | m, n \in \mathbb{Z}\}$ the set of rational numbers
- 3. The set of Integers $\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4...\}$ is **not** a field as F4 does not hold, e.g. given $a=3\in\mathbb{Z}$ there is no $b\in\mathbb{Z}$ such that $a\times b=1$, in \mathbb{R} $b= b=\frac{1}{3}$ but $\frac{1}{3}\notin\mathbb{Z}$.
- 4. $F = \{0,1\}$ the operations + and x are defined by:

+	0	1	x	0	1
0	0	1	0	0	0
1	1	0	1	0	1

It is necessary to test every possible case for each of the field properties, for example :

F1. a+b=b+a one must test 4 times for ever possible value of a and b.

5. $\mathbb{C} = \{a + bi | a, b \in \mathbb{R}\}$ - the complex numbers

Theorem: $\forall a, b \in F$ $(a+b)(a-b)=a^2-b^2$

In order to prove the above theorem one must first prove the below lemma:

Lemma – I. $\forall a \in F$, a has a unique negative Precisely $a+b_1=0$, $a+b_2=0$ it follows that $b_1=b_2$ II. $\forall a \neq 0 \in F$, a has a unique inverse. Precisely $a \neq 0, a \times b_1 = 1, a \times b_2 = 1$ it follows that $b_1 = b_2$ Proof of Part II: Suppose $a \neq 0, ab_1 = 1 = ab_2$ Take any c such that ca=1 (Exists by F4) $c(ab_1)=c(ab_2)$ $(ca)b_1 = (ca)b_2$ (by property F2) $1 \times b_1 = 1 \times b_2$ (by choice of c) $b_1 = b_2$ (by F3) For practice prove part I. Definition: $\forall a \in F$ define -a to be **the** b for which a+b=0, therefore a + (-a) = 0Likewise $\forall a \in F$ define a^{-1} to be the b for which $a \times b = 1$ therefore $a \times a^{-1} = 1$. Definition: a-b:=a+(-b) and $\frac{a}{b}:=a\times b^{-1}$ and $a^2:=a\times a$. Lemma: $\forall a, b \quad a \times (-b) = -ab$, prove for practice. Proof of the main theorem: (a-b)(a+b)=(a+(-b))(a+b) = (by definition)a(a+b)+(-b)(a+b) = (by property F5) $(a \times a + a \times b) + ((-b) \times a + (-b) \times b) = (by property F5)$ $(a^{2}+ab)+((-b)\times a+(-b)\times b) = (by definition)$ $(a^2+ab)+(-ab+(-b\times b)) = (by above lemma)$ $(a^2+ab)+(-ab+(-b^2)) =$ (by above lemma) $a^{2}+(ab+(-ab+(-b^{2}))) = (by property F2)$ $a^{2}+((ab+-ab)-b^{2}) = (by property F2)$ $a^{2}+((0)+(-b^{2}))$ (by above lemma and definition) $a^2 + -(b^2) = ($ by property F3) $a^2 - b^2$ (by definition)