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Problem 1

1. Standard theory, the proof is in the notes.

2. Suppose there is an element x ∈ G, whose order is a power of p, such that

x ∈ NG(P ) and x 6∈ P . It follows that < x >≤ NG(P ) and since P � G,

we have < x > P ≤ NG(P ). The second isomorphism theorem implies that

| < x > P | = |<x>||P |
|<x>∩P | = |P | · |<x>|

|<x>∩P | > |P |, because < x > ∩P is a proper

subset of < x > (x 6∈< x > ∩P ). Also, note that | < x > P | is a power of p (look

at the right hand of the previous relation). This means that P is not a Sylow-p

subgroup of G, which is a contradiction. �

Problem 2

1. Let GoH be a semidirect product of two torsion free groups G,H. Suppose that

a non trivial element (g, h) ∈ GoH has finite order n.

(a) If h 6= eH , then (g, h)n = (∗, hn) = (eG, eH) ⇒ hn = eH , which is a

contradiction.

(b) If h = eH , then g 6= eG and (g, h)n = (g, eH)n = (gn, eH) = (eG, eH) ⇒
gn = eG, again a contradiction.

2. By induction on the first part, it follows that the pure braid group PBn
∼= F (n−

1) o (F (n − 2) o (· · · o (F (2) o F (1)))) is torsion free and so the only element

β ∈ PBn with finite order satisfying β7 = e is the identity, β = e. �

Problem 3

( ⇒ ) Let f : G/H1 → G/H2 be a G-isomorphism. Also, let f(H1) = xH2 for some

x ∈ G. Then for all h1 ∈ H1 it holds xH2 = f(H1) = f(h1 · H1) = h1 · f(H1) =

1



h1 · xH2 = h1xH2 ⇒ h1 · xH2x
−1 = xH2x

−1 ⇒ h1 ∈ xH2x
−1, ∀h1 ∈ H1 ⇒

H1 ≤ xH2x
−1. (correction!)

[
Further, f is bijective so |G : H1| = |G : H2| ⇒

|H1| = |H2| ⇒ H1 = xH2x
−1, which means that H1, H2 are conjugate.

]
(The last

argument assumes finiteness of H1, H2). A similar argument for the inverse f−1

gives H2 ≤ x−1H1x and so H1 = xH2x
−1.

(⇐) Let H1, H2 be conjugate subgroups of G and x ∈ G such that H1 = xH2x
−1.

Define f : G/H1 → G/H2, f(gH1) = gxH2. For g, g′ ∈ G it holds f(gH1) = f(g′H1)

⇔ gxH2 = g′xH2 ⇔ x−1g−1g′x ∈ H2 ⇔ g−1g′ ∈ xH2x
−1 = H1 ⇔ gH1 = g′H1 and

so f is well defined and injective. Also, it is obvious that f is surjective and respects

the actions, which makes it a G-isomorphism. �

Problem 4

1. < (12), (12 · · ·n) >≤ G ⇒ (12 · · ·n)−1(12)(12 · · ·n) = (1n) ∈ G and (12 · · ·n)−k(12)(12 · · ·n)k =

(n − k + 1 n − k + 2) ∈ G, k = 2, · · · , n. Thus, (13) = (23)(12)(23) ∈ G,

(14) = (34)(13)(34) ∈ G and continuing this way we obtain (1i) ∈ G, ∀i. It fol-

lows that (ij) = (1i)(1j)(1i) ∈ G, ∀i, j and hence G = Sn since every permutation

can be written as a product of transpositions.

2. < (123), (12 · · ·n) >= G, n is odd. Of course, G ≤ An. In order to prove

the reverse inclusion it suffices to show that (abc) ∈ G ∀a, b, c, which in turn is

reduced in proving (1ab) ∈ G, ∀a, b, since (abc) = (1cb)(1ab)(1ac). Again, the

last statement can be reduced further to the fact that (12a) ∈ G, ∀a, because

(1ab) = (12b)(12a)(12a).

• Similarly to the first part we have (12 · · ·n)−k(123)(12 · · ·n)k ∈ G, ∀k ⇒
(12n), (1 n− 1 n) ∈ G and (n− k+ 1 n− k+ 2 n− k+ 3) ∈ G, k = 3, · · · , n.

Hence, it holds (34)(23)(123)(23)(34) = (34)(132)(34) = (142) ∈ G ⇒ (124) ∈ G
⇒ (35)(34)(124)(34)(35) = (35)(123)(35) = (125) ∈ G ⇒ (46)(45)(125)(45)(46) =

(126) ∈ G and so on we obtain (12a) ∈ G, ∀a. This completes the proof.

3. If n is even then of course it is not true that G ≤ An, since the cycle (12 · · ·n) is an

odd permutation. However, the same method we used in the second part can be

applied in this case also, which yields that G ⊃ An ⇒ G ⊃ An∪(12 · · ·n)An = Sn

and therefore G = Sn. �
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