MAT1100HF, TERM TEST, HINTS-SOLUTIONS

Grigorios Fournodavlos St. No.: 998805761

Problem 1

- 1. Standard theory, the proof is in the notes.
- 2. Suppose there is an element $x \in G$, whose order is a power of p, such that $x \in N_G(P)$ and $x \notin P$. It follows that $\langle x \rangle \leq N_G(P)$ and since $P \triangleleft G$, we have $\langle x \rangle P \leq N_G(P)$. The second isomorphism theorem implies that $|\langle x \rangle P| = \frac{|\langle x \rangle||P|}{|\langle x \rangle \cap P|} = |P| \cdot \frac{|\langle x \rangle|}{|\langle x \rangle \cap P|} > |P|$, because $\langle x \rangle \cap P$ is a proper subset of $\langle x \rangle (x \notin \langle x \rangle \cap P)$. Also, note that $|\langle x \rangle P|$ is a power of p (look at the right hand of the previous relation). This means that P is not a Sylow-p subgroup of G, which is a contradiction.

Problem 2

- 1. Let $G \rtimes H$ be a semidirect product of two torsion free groups G, H. Suppose that a non trivial element $(g, h) \in G \rtimes H$ has finite order n.
 - (a) If $h \neq e_H$, then $(g,h)^n = (*,h^n) = (e_G,e_H) \implies h^n = e_H$, which is a contradiction.
 - (b) If $h = e_H$, then $g \neq e_G$ and $(g, h)^n = (g, e_H)^n = (g^n, e_H) = (e_G, e_H) \Rightarrow g^n = e_G$, again a contradiction.
- 2. By induction on the first part, it follows that the pure braid group $PB_n \cong F(n-1) \rtimes (F(n-2) \rtimes (\cdots \rtimes (F(2) \rtimes F(1))))$ is torsion free and so the only element $\beta \in PB_n$ with finite order satisfying $\beta^7 = e$ is the identity, $\beta = e$.

Problem 3

 (\Rightarrow) Let $f: G/H_1 \to G/H_2$ be a *G*-isomorphism. Also, let $f(H_1) = xH_2$ for some $x \in G$. Then for all $h_1 \in H_1$ it holds $xH_2 = f(H_1) = f(h_1 \cdot H_1) = h_1 \cdot f(H_1) =$

 $h_1 \cdot xH_2 = h_1xH_2 \Rightarrow h_1 \cdot xH_2x^{-1} = xH_2x^{-1} \Rightarrow h_1 \in xH_2x^{-1}, \forall h_1 \in H_1 \Rightarrow H_1 \leq xH_2x^{-1}.$ (correction!)[Further, f is bijective so $|G : H_1| = |G : H_2| \Rightarrow |H_1| = |H_2| \Rightarrow H_1 = xH_2x^{-1}$, which means that H_1, H_2 are conjugate.] (The last argument assumes finiteness of H_1, H_2). A similar argument for the inverse f^{-1} gives $H_2 \leq x^{-1}H_1x$ and so $H_1 = xH_2x^{-1}$.

(⇐) Let H_1, H_2 be conjugate subgroups of G and $x \in G$ such that $H_1 = xH_2x^{-1}$. Define $f: G/H_1 \to G/H_2$, $f(gH_1) = gxH_2$. For $g, g' \in G$ it holds $f(gH_1) = f(g'H_1)$ $\Leftrightarrow gxH_2 = g'xH_2 \Leftrightarrow x^{-1}g^{-1}g'x \in H_2 \Leftrightarrow g^{-1}g' \in xH_2x^{-1} = H_1 \Leftrightarrow gH_1 = g'H_1$ and so f is well defined and injective. Also, it is obvious that f is surjective and respects the actions, which makes it a G-isomorphism.

Problem 4

- 1. $<(12), (12\cdots n) > \leq G \Rightarrow (12\cdots n)^{-1}(12)(12\cdots n) = (1n) \in G \text{ and } (12\cdots n)^{-k}(12)(12\cdots n)^k = (n-k+1, n-k+2) \in G, \ k = 2, \cdots, n.$ Thus, $(13) = (23)(12)(23) \in G, (14) = (34)(13)(34) \in G \text{ and continuing this way we obtain } (1i) \in G, \forall i.$ It follows that $(ij) = (1i)(1j)(1i) \in G, \forall i, j \text{ and hence } G = S_n \text{ since every permutation can be written as a product of transpositions.}$
- 2. < (123), $(12 \cdots n) >= G$, *n* is odd. Of course, $G \leq A_n$. In order to prove the reverse inclusion it suffices to show that $(abc) \in G \ \forall a, b, c$, which in turn is reduced in proving $(1ab) \in G, \ \forall a, b, \ since \ (abc) = (1cb)(1ab)(1ac)$. Again, the last statement can be reduced further to the fact that $(12a) \in G, \ \forall a, \ because$ (1ab) = (12b)(12a)(12a).
 - Similarly to the first part we have $(12\cdots n)^{-k}(123)(12\cdots n)^k \in G, \forall k \Rightarrow (12n), (1 n-1 n) \in G$ and $(n-k+1 n-k+2 n-k+3) \in G, k=3,\cdots, n$.

Hence, it holds $(34)(23)(123)(23)(34) = (34)(132)(34) = (142) \in G \implies (124) \in G$ $\implies (35)(34)(124)(34)(35) = (35)(123)(35) = (125) \in G \implies (46)(45)(125)(45)(46) = (126) \in G$ and so on we obtain $(12a) \in G$, $\forall a$. This completes the proof.

3. If n is even then of course it is not true that $G \leq A_n$, since the cycle $(12 \cdots n)$ is an odd permutation. However, the same method we used in the second part can be applied in this case also, which yields that $G \supset A_n \Rightarrow G \supset A_n \cup (12 \cdots n)A_n = S_n$ and therefore $G = S_n$.