MAT1100HF, TERM TEST, HINTS-SOLUTIONS

Grigorios Fournodavlos
St. No.: 998805761

Problem 1

1. Standard theory, the proof is in the notes.
2. Suppose there is an element $x \in G$, whose order is a power of p, such that $x \in N_{G}(P)$ and $x \notin P$. It follows that $<x>\leq N_{G}(P)$ and since $P \triangleleft G$, we have $<x>P \leq N_{G}(P)$. The second isomorphism theorem implies that $|<x>P|=\frac{|<x\rangle| | P \mid}{\mid\langle x>\cap P|}=|P| \cdot \frac{|<x>|}{|\langle x\rangle \cap P|}>|P|$, because $<x>\cap P$ is a proper subset of $\langle x\rangle(x \notin<x>\cap P)$. Also, note that $|<x>P|$ is a power of p (look at the right hand of the previous relation). This means that P is not a Sylow- p subgroup of G, which is a contradiction.

Problem 2

1. Let $G \rtimes H$ be a semidirect product of two torsion free groups G, H. Suppose that a non trivial element $(g, h) \in G \rtimes H$ has finite order n.
(a) If $h \neq e_{H}$, then $(g, h)^{n}=\left(*, h^{n}\right)=\left(e_{G}, e_{H}\right) \Rightarrow h^{n}=e_{H}$, which is a contradiction.
(b) If $h=e_{H}$, then $g \neq e_{G}$ and $(g, h)^{n}=\left(g, e_{H}\right)^{n}=\left(g^{n}, e_{H}\right)=\left(e_{G}, e_{H}\right) \Rightarrow$ $g^{n}=e_{G}$, again a contradiction.
2. By induction on the first part, it follows that the pure braid group $P B_{n} \cong F(n-$ 1) $\rtimes(F(n-2) \rtimes(\cdots \rtimes(F(2) \rtimes F(1))))$ is torsion free and so the only element $\beta \in P B_{n}$ with finite order satisfying $\beta^{7}=e$ is the identity, $\beta=e$.

Problem 3

(\Rightarrow) Let $f: G / H_{1} \rightarrow G / H_{2}$ be a G-isomorphism. Also, let $f\left(H_{1}\right)=x H_{2}$ for some $x \in G$. Then for all $h_{1} \in H_{1}$ it holds $x H_{2}=f\left(H_{1}\right)=f\left(h_{1} \cdot H_{1}\right)=h_{1} \cdot f\left(H_{1}\right)=$
$h_{1} \cdot x H_{2}=h_{1} x H_{2} \Rightarrow h_{1} \cdot x H_{2} x^{-1}=x H_{2} x^{-1} \Rightarrow h_{1} \in x H_{2} x^{-1}, \forall h_{1} \in H_{1} \Rightarrow$ $H_{1} \leq x H_{2} x^{-1}$. (correction!) [Further, f is bijective so $\left|G: H_{1}\right|=\left|G: H_{2}\right| \Rightarrow$ $\left|H_{1}\right|=\left|H_{2}\right| \Rightarrow H_{1}=x H_{2} x^{-1}$, which means that H_{1}, H_{2} are conjugate.] (The last argument assumes finiteness of H_{1}, H_{2}). A similar argument for the inverse f^{-1} gives $H_{2} \leq x^{-1} H_{1} x$ and so $H_{1}=x H_{2} x^{-1}$.
(\Leftarrow) Let H_{1}, H_{2} be conjugate subgroups of G and $x \in G$ such that $H_{1}=x H_{2} x^{-1}$. Define $f: G / H_{1} \rightarrow G / H_{2}, f\left(g H_{1}\right)=g x H_{2}$. For $g, g^{\prime} \in G$ it holds $f\left(g H_{1}\right)=f\left(g^{\prime} H_{1}\right)$ $\Leftrightarrow g x H_{2}=g^{\prime} x H_{2} \Leftrightarrow x^{-1} g^{-1} g^{\prime} x \in H_{2} \Leftrightarrow g^{-1} g^{\prime} \in x H_{2} x^{-1}=H_{1} \Leftrightarrow g H_{1}=g^{\prime} H_{1}$ and so f is well defined and injective. Also, it is obvious that f is surjective and respects the actions, which makes it a G-isomorphism.

Problem 4

1. $\left\langle(12),(12 \cdots n)>\leq G \Rightarrow(12 \cdots n)^{-1}(12)(12 \cdots n)=(1 n) \in G\right.$ and $(12 \cdots n)^{-k}(12)(12 \cdots n)^{k}=$ $(n-k+1 n-k+2) \in G, k=2, \cdots, n$. Thus, $(13)=(23)(12)(23) \in G$, $(14)=(34)(13)(34) \in G$ and continuing this way we obtain $(1 i) \in G, \forall i$. It follows that $(i j)=(1 i)(1 j)(1 i) \in G, \forall i, j$ and hence $G=S_{n}$ since every permutation can be written as a product of transpositions.
2. $<(123),(12 \cdots n)>=G, n$ is odd. Of course, $G \leq A_{n}$. In order to prove the reverse inclusion it suffices to show that $(a b c) \in G \forall a, b, c$, which in turn is reduced in proving $(1 a b) \in G, \forall a, b$, since $(a b c)=(1 c b)(1 a b)(1 a c)$. Again, the last statement can be reduced further to the fact that $(12 a) \in G, \forall a$, because $(1 a b)=(12 b)(12 a)(12 a)$.

- Similarly to the first part we have $(12 \cdots n)^{-k}(123)(12 \cdots n)^{k} \in G, \forall k \Rightarrow$ $(12 n),(1 n-1 n) \in G$ and $(n-k+1 n-k+2 n-k+3) \in G, k=3, \cdots, n$.

Hence, it holds $(34)(23)(123)(23)(34)=(34)(132)(34)=(142) \in G \Rightarrow(124) \in G$ $\Rightarrow(35)(34)(124)(34)(35)=(35)(123)(35)=(125) \in G \Rightarrow(46)(45)(125)(45)(46)=$ $(126) \in G$ and so on we obtain $(12 a) \in G, \forall a$. This completes the proof.
3. If n is even then of course it is not true that $G \leq A_{n}$, since the cycle $(12 \cdots n)$ is an odd permutation. However, the same method we used in the second part can be applied in this case also, which yields that $G \supset A_{n} \Rightarrow G \supset A_{n} \cup(12 \cdots n) A_{n}=S_{n}$ and therefore $G=S_{n}$.

