MAT1100 Homework 1

Ling-Sang Tse

Due Date: October 6, 2014

Problem 1

Case 1: $|x y|=n<\infty$ for some $n \in \mathbb{N}$

Claim: $|y x|=n$.

Proof:
First, note that if $n=1$, then $x y=e \Rightarrow x=y^{-1}$, so $y x=y y^{-1}=e$ and so $|y x|=1=n$, so assume $n>1$.

$$
(y x)^{n+1}=y(x y)^{n} x=y x
$$

Multiplying both sides by $(y)^{-1}$ on the left and x^{-1} on the right,

$$
(y x)^{n}=e
$$

Since the order n of an element g in a group G is the smallest n such that $g^{n}=e$, we have $|y x| \leq n$ by the last equation. To show that $|y x| \geq n$, suppose $(y x)^{k}=e$ for some $k<n$ for a contradiction:

$$
(x y)^{k+1}=x(y x)^{k} y=x y
$$

Multiplying both sides by $(x)^{-1}$ on the left and y^{-1} on the right,

$$
(x y)^{k}=e
$$

This is a contradiction, since $|x y|=n>k$.
Therefore, we have proven the claim $|y x|=n$, and so $|x y|=|y x|=n$.

Case 2: $|x y|=\infty$.
If $|x y|=\infty$, then $(x y)^{n} \neq e$ for all $n \in \mathbb{N}$. Suppose that $|y x|=k<\infty$ for some $n \in \mathbb{N}$. Then

$$
(x y)^{k+1}=x(y x)^{k} y=x y
$$

Multiplying both sides by $(x)^{-1}$ on the left and y^{-1} on the right,

$$
(x y)^{k}=e
$$

This is a contradiction, since $|x y|=\infty$.
Therefore, $|x y|=|y x|=\infty$.

Problem 2

Let $x, y \in G$.
(\Rightarrow) Suppose the function $\phi: G \rightarrow G$ given by $\phi(g)=g^{2}$ is a morphism of groups. Then

$$
\phi(x y)=\phi(x) \phi(y) \Rightarrow(x y)^{2}=x^{2} y^{2}
$$

Multiplying both sides of the equation on the right by x^{-1} on the left and y^{-1} on the right,

$$
y x=x y
$$

$x, y \in G$ was arbitrary, so G is abelian.
(\Leftarrow) Suppose G is abelian. Then

$$
\begin{aligned}
\phi(x y) & =(x y)^{2} \\
& =x y x y \\
& =x(x y) y \text { since } G \text { is abelian } \\
& =\phi(x) \phi(y)
\end{aligned}
$$

Therefore, $\phi: G \rightarrow G$ given by $\phi(g)=g^{2}$ is a morphism of groups.

Problem 3

Let $G^{\prime}=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$, and we show that G^{\prime} is a normal subgroup in G.
G^{\prime} was defined as the subgroup generated by all the commutators of elements of G, so by definition, it is a subgroup of G. To show that G^{\prime} is normal, let $x_{1} y_{1} x_{1}{ }^{-1} y_{1}{ }^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1} \in G^{\prime}$ be arbitrary, with $x_{1}, y_{1}, \ldots, x_{n}, y_{n} \in G$, and let $a \in G$. Then

$$
\begin{aligned}
& a^{-1} x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1} a \\
& =\left(a^{-1} x_{1} a\right)\left(a^{-1} y_{1} a\right)\left(a^{-1} x_{1}^{-1} a\right)\left(a^{-1} y_{1}{ }^{-1} a\right) \ldots a\left(a^{-1} x_{n} a\right)\left(a^{-1} y_{n} a\right)\left(a^{-1} x_{n}^{-1} a\right)\left(a^{-1} y_{n}^{-1} a\right) \\
& =\left(a^{-1} x_{1} a\right)\left(a^{-1} y_{1} a\right)\left(a^{-1} x_{1} a\right)^{-1}\left(a^{-1} y_{1} a\right)^{-1} \ldots\left(a^{-1} x_{n} a\right)\left(a^{-1} y_{n} a\right)\left(a^{-1} x_{n} a\right)^{-1}\left(a^{-1} y_{n} a\right)^{-1} \in G^{\prime} \\
& \text { since }\left(a^{-1} x_{1} a\right),\left(a^{-1} y_{1} a\right) \in G .
\end{aligned}
$$

Therefore, G^{\prime} is normal.

To show that G / G^{\prime} is abelian:
Let $x, y \in G$ be arbitrary. Then $\left.x^{-1} y^{-1} x y=x^{-1} y^{-1}\left(x^{-1}\right)^{-1}\left(y^{-1}\right)^{-1}\right) \in G^{\prime}$, so

$$
\begin{aligned}
x^{-1} y^{-1} x y G^{\prime} & =G^{\prime} . \\
(y x)^{-1} x y G^{\prime} & =G^{\prime}
\end{aligned}
$$

Multiplying both sides by $y x$ on the left,

$$
x y G^{\prime}=y x G^{\prime} .
$$

Therefore, G^{\prime} is abelian.
Suppose ϕ is a morphism from G into an abelian group A, and we wish to show that there exists $\psi: G / G^{\prime} \rightarrow A$ such that $\phi=\psi \circ \pi$, where $\pi: G \Rightarrow G / G^{\prime}$ is the natural map $g \mapsto \bar{g} \in G / G^{\prime}$. By the Universal Property of Quotients, it is sufficient to show that $G^{\prime} \subset$ ker ϕ.

Let $x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1} \in G^{\prime}$ be arbitrary. Then

$$
\begin{aligned}
\phi\left(x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1}\right) & =\phi\left(x_{1}\right) \phi\left(y_{1}\right) \phi\left(x_{1}^{-1}\right) \phi\left(y_{1}^{-1}\right) \ldots \phi\left(x_{n}\right) \phi\left(y_{n}\right) \phi\left(x_{n}^{-1}\right) \phi\left(y_{n}^{-1}\right) \\
& =\phi\left(x_{1}\right) \phi\left(y_{1}\right) \phi\left(x_{1}\right)^{-1} \phi\left(y_{1}\right)^{-1} \ldots \phi\left(x_{n}\right) \phi\left(y_{n}\right) \phi\left(x_{n}\right)^{-1} \phi\left(y_{n}\right)^{-1} \\
& =\phi\left(x_{1}\right) \phi\left(x_{1}\right)^{-1} \phi\left(y_{1}\right) \phi\left(y_{1}\right)^{-1} \ldots \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{-1} \phi\left(y_{n}\right) \phi\left(y_{n}\right)^{-1}
\end{aligned}
$$

since ϕ maps into A and A is abelian

$$
=e
$$

Therefore, $x y x^{-1} y^{-1} \in \operatorname{ker} \phi$, so by the University Property of Quotients, there exists a $\psi: G / G^{\prime} \rightarrow A$ such that $\phi=\psi \circ \pi$. i.e., any morphism from G into an abelian group factors through G / G^{\prime}.

Problem 4

First, we show that $\operatorname{Inn} G$ is a subgroup of Aut G :
Let $\phi_{g}, \phi_{h}: x \mapsto x^{g}$ be inner automorphisms of G, and let $x \in G$. Then

$$
\begin{aligned}
\phi_{g} \circ \phi_{h^{-1}}(x) & =\phi_{g}\left(h x h^{-1}\right) \\
& =g h x h^{-1} g^{-1} \\
& =g h x(g h)^{-1} \\
& =\phi_{g h}
\end{aligned}
$$

is an inner automorphism of G.
Next, we show that $\operatorname{Inn} G$ is normal in Aut G :
Let $\phi_{g}: x \mapsto x^{g}$ be an inner automorphism and let $\psi \in$ Aut G. Then

$$
\begin{aligned}
\psi \circ \phi_{g} \circ \psi^{-1}(x) & =\psi \circ \phi_{g}\left(\psi^{-1}(x)\right) \\
& =\psi\left(g \psi^{-1}(x) g^{-1}\right) \\
& =\psi(g) \psi\left(\psi^{-1}(x)\right) \psi\left(g^{-1}\right) \\
& =\psi(g) x \psi\left(g^{-1}\right) \\
& =\psi(g) x \psi(g)^{-1}
\end{aligned}
$$

is an inner automorphism of G, since $\psi(g) \in G$.
Therefore, Inn G is normal in Aut G.

