MAT1100 Homework 1

Ling-Sang Tse

Due Date: October 6, 2014

Problem 1

Case 1: $|xy| = n < \infty$ for some $n \in \mathbb{N}$

Claim: |yx| = n.

Proof:

First, note that if n = 1, then $xy = e \Rightarrow x = y^{-1}$, so $yx = yy^{-1} = e$ and so |yx| = 1 = n, so assume n > 1.

$$(yx)^{n+1} = y(xy)^n x = yx$$

Multiplying both sides by $(y)^{-1}$ on the left and x^{-1} on the right,

 $(yx)^n = e.$

Since the order n of an element g in a group G is the smallest n such that $g^n = e$, we have $|yx| \le n$ by the last equation. To show that $|yx| \ge n$, suppose $(yx)^k = e$ for some k < n for a contradiction:

$$(xy)^{k+1} = x(yx)^k y = xy$$

Multiplying both sides by $(x)^{-1}$ on the left and y^{-1} on the right,

 $(xy)^k = e$

This is a contradiction, since |xy| = n > k.

Therefore, we have proven the claim |yx| = n, and so |xy| = |yx| = n.

Case 2: $|xy| = \infty$.

If $|xy| = \infty$, then $(xy)^n \neq e$ for all $n \in \mathbb{N}$. Suppose that $|yx| = k < \infty$ for some $n \in \mathbb{N}$. Then

$$(xy)^{k+1} = x(yx)^k y = xy$$

Multiplying both sides by $(x)^{-1}$ on the left and y^{-1} on the right,

 $(xy)^k = e$

This is a contradiction, since $|xy| = \infty$. Therefore, $|xy| = |yx| = \infty$.

Problem 2

Let $x, y \in G$. (\Rightarrow) Suppose the function $\phi : G \to G$ given by $\phi(g) = g^2$ is a morphism of groups. Then

$$\phi(xy) = \phi(x)\phi(y) \Rightarrow (xy)^2 = x^2y^2$$

Multiplying both sides of the equation on the right by x^{-1} on the left and y^{-1} on the right,

yx = xy.

 $x,y\in G$ was arbitrary, so G is abelian.

 (\Leftarrow) Suppose G is abelian. Then

$$(xy) = (xy)^{2}$$

= $xyxy$
= $x(xy)y$ since G is abelian
= $\phi(x)\phi(y)$

Therefore, $\phi: G \to G$ given by $\phi(g) = g^2$ is a morphism of groups.

 ϕ

Problem 3

Let $G' = \{aba^{-1}b^{-1} | a, b \in G\}$, and we show that G' is a normal subgroup in G.

G' was defined as the subgroup generated by all the commutators of elements of G, so by definition, it is a subgroup of G. To show that G' is normal, let $x_1y_1x_1^{-1}y_1^{-1}...x_ny_nx_n^{-1}y_n^{-1} \in G'$ be arbitrary,with $x_1, y_1, ..., x_n, y_n \in G$, and let $a \in G$. Then

$$\begin{split} &a^{-1}x_1y_1x_1^{-1}y_1^{-1}\dots x_ny_nx_n^{-1}y_n^{-1}a\\ &= (a^{-1}x_1a)(a^{-1}y_1a)(a^{-1}x_1^{-1}a)(a^{-1}y_1^{-1}a)\dots a(a^{-1}x_na)(a^{-1}y_na)(a^{-1}x_n^{-1}a)(a^{-1}y_n^{-1}a)\\ &= (a^{-1}x_1a)(a^{-1}y_1a)(a^{-1}x_1a)^{-1}(a^{-1}y_1a)^{-1}\dots (a^{-1}x_na)(a^{-1}y_na)(a^{-1}x_na)^{-1}(a^{-1}y_na)^{-1} \in G'\\ &\text{since } (a^{-1}x_1a), (a^{-1}y_1a) \in G. \end{split}$$

Therefore, G' is normal.

To show that G/G' is abelian: Let $x, y \in G$ be arbitrary. Then $x^{-1}y^{-1}xy = x^{-1}y^{-1}(x^{-1})^{-1}(y^{-1})^{-1}) \in G'$, so

$$\begin{aligned} x^{-1}y^{-1}xyG' &= G'.\\ (yx)^{-1}xyG' &= G' \end{aligned}$$

Multiplying both sides by yx on the left,

$$xyG' = yxG'.$$

Therefore, G' is abelian.

Suppose ϕ is a morphism from G into an abelian group A, and we wish to show that there exists $\psi: G/G' \to A$ such that $\phi = \psi \circ \pi$, where $\pi: G \Rightarrow G/G'$ is the natural map $g \mapsto \overline{g} \in G/G'$. By the Universal Property of Quotients, it is sufficient to show that $G' \subset \ker \phi$.

Let $x_1y_1x_1^{-1}y_1^{-1}...x_ny_nx_n^{-1}y_n^{-1} \in G'$ be arbitrary. Then

$$\begin{aligned} \phi(x_1y_1x_1^{-1}y_1^{-1}...x_ny_nx_n^{-1}y_n^{-1}) &= \phi(x_1)\phi(y_1)\phi(x_1^{-1})\phi(y_1^{-1})...\phi(x_n)\phi(y_n)\phi(x_n^{-1})\phi(y_n^{-1}) \\ &= \phi(x_1)\phi(y_1)\phi(x_1)^{-1}\phi(y_1)^{-1}...\phi(x_n)\phi(y_n)\phi(x_n)^{-1}\phi(y_n)^{-1} \\ &= \phi(x_1)\phi(x_1)^{-1}\phi(y_1)\phi(y_1)^{-1}...\phi(x_n)\phi(x_n)^{-1}\phi(y_n)\phi(y_n)^{-1} \\ &\quad \text{since } \phi \text{ maps into A and A is abelian} \\ &= e \end{aligned}$$

Therefore, $xyx^{-1}y^{-1} \in \ker \phi$, so by the University Property of Quotients, there exists a $\psi: G/G' \to A$ such that $\phi = \psi \circ \pi$. i.e., any morphism from G into an abelian group factors through G/G'.

Problem 4

First, we show that Inn G is a subgroup of Aut G: Let $\phi_g, \phi_h : x \mapsto x^g$ be inner automorphisms of G, and let $x \in G$. Then

$$\begin{split} \phi_g \circ \phi_{h^{-1}}(x) &= \phi_g(hxh^{-1}) \\ &= ghxh^{-1}g^{-1} \\ &= ghx(gh)^{-1} \\ &= \phi_{gh} \end{split}$$

is an inner automorphism of G.

Next, we show that Inn G is normal in Aut G: Let $\phi_g: x \mapsto x^g$ be an inner automorphism and let $\psi \in$ Aut G. Then

$$\psi \circ \phi_g \circ \psi^{-1}(x) = \psi \circ \phi_g(\psi^{-1}(x))$$
$$= \psi(g\psi^{-1}(x)g^{-1})$$
$$= \psi(g)\psi(\psi^{-1}(x))\psi(g^{-1})$$
$$= \psi(g)x\psi(g^{-1})$$
$$= \psi(g)x\psi(g^{-1})$$

is an inner automorphism of G, since $\psi(g)\in G$. Therefore, Inn G is normal in Aut G.