Problem Set 18 - MAT257

March 29, 2017

Disclaimer-This page has been typeset by a student as a convenient consolidation of the homework problems. There inevitably will be mistakes; always defer to the official handout!

1 "Ponder..."

1. Exercises in Munkres $\S 34$.
2. Exercises in Munkres $\S 35$.

2 Solve and submit!

A. Consider S^{n-1} at the boundary of $D^{n} \subset \mathbb{R}^{n}$, taken with its standard orientation, and let $\iota: S^{n-1} \rightarrow \mathbb{R}^{n}$ be the inclusion map. Let

$$
\omega=\iota^{*}\left(\sum_{i} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}\right) \in \Omega^{\mathrm{top}}\left(S^{n-1}\right)
$$

Prove that if $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right)$ is a positively oriented basis of $T_{x} S^{n-1}$ for some $\mathbf{x} \in S^{n-1}$, then $\omega\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}\right)$ is the volume of the $(n-1)$-dimensional parallelepiped spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-1}$, and hence for any smooth function f on $S^{n-1}, \int_{S^{n-1}} f \omega=\int_{S^{n-1}} f \mathrm{~d} V$, where the latter integral is integration relative to the volume, as defined a long time ago.
B. An alternative definition for "orientation".

Define a norientation ("new orientation") of a vector space V to be a function

$$
\nu:\{\text { ordered bases of } V\} \rightarrow\{ \pm 1\}
$$

which satisfies

$$
\nu(v)=\operatorname{sign}\left(\operatorname{det}\left(C_{v}^{u}\right)\right) \nu(u)
$$

whenever u and v are ordered bases of V and C_{v}^{u} is the change-of-basis matrix between them.

1. Explain how if $\operatorname{dim}(V)>1$, a norientation is equivalent to an orientation.
2. Come up with a reasonable definition of a norientation of a k-dimensional manifold.
3. Explain how a norientation of M induces a norientation of ∂M.
4. What is a 0 -dimensional manifold? What is a norientation of a 0 -dimensional manifold?
5. What is the integral of a 0 -form on a 0 -dimensional noriented manifold?

6 . What is $\partial[0,1]$ as a noriented 0 -manifold? (Assume that $[0,1]$ is endowed with its "positive" or "standard" orientation/norientation).
C. Let $\omega=y d x \in \Omega^{1}\left(\mathbb{R}_{x, y}^{2}\right)$.

1. Let Γ be the graph in $\mathbb{R}_{x, y}^{2}$ of some smooth function $f:[a, b] \rightarrow \mathbb{R}$. Using the inclusion of Γ to $\mathbb{R}_{x, y}^{2}$, consider ω also as a 1-form on Γ. What is $\int_{\Gamma} \omega$?
2. Prove that if E is an ellipse in $\mathbb{R}_{x, y}^{2}$ (of whatever major and minor axes, placed anywhere and tilted as you please), then $\int_{\partial E} \omega$ is the area of E.
3. Compute also $d \omega$ and $\int_{E} d \omega$.
