Problem Set 19 - MAT257

April 5, 2017

Disclaimer-This page has been typeset by a student as a convenient consolidation of the homework problems. There inevitably will be mistakes; always defer to the official handout!

1 Munkres §37 (pp.308-309)

4. Let M be the 2-manifold in \mathbb{R}^{3} consisting of all points \mathbf{x} such that

$$
4\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+4\left(x_{3}\right)^{2}=4 \quad \text { and } \quad x_{2} \geq 0
$$

Then ∂M is the circle consisting of all points such that

$$
\left(x_{1}\right)^{2}+\left(x_{3}\right)^{2}=1 \quad \text { and } \quad x_{2} \geq 0
$$

See Figure 37.5 (Munkres, p.309). The map

$$
\alpha(u, v)=\left(u, 2 \sqrt{1-u^{2}-v^{2}}, v\right)
$$

for $u^{2}+v^{2}<1$, is a coordinate patch on M that covers $M \backslash \partial M$. Orient M so that α belongs to the orientation, and give ∂M the induced orientation.
(a) What normal vector corresponds to the orientation of M ? What tangent vector corresponds to the induced orientation of ∂M ?
(b) Let ω be the 1-form $\omega=x_{2} d x_{1}+3 x_{1} d x_{3}$. Evaluate $\int_{\partial M} \omega$ directly.
(c) Evaluate $\int_{M} d \omega$ directly, by expressing it as an integral over the unit disc in the (u, v) plane.

Figure 37.5
5. The 3-ball $B^{3}(r)$ is a 3 -manifold in \mathbb{R}^{3}; orient it naturally and give $S^{2}(r)$ the induced orientation. Assume that ω is a 2-form defined in $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$ such that

$$
\int_{S^{2}(r)} \omega=a+\frac{b}{r}
$$

for each $r>0$.
(a) Given $0<c<d$, let M be the 3-manifold in \mathbb{R}^{3} consisting of all \mathbf{x} with $c \leq\|\mathbf{x}\| \leq d$, oriented naturally. Evaluate $\int_{M} d \omega$.
(b) If $d \omega=0$, what can you say about a and b ?
(c) If $\omega=d \eta$ for some η in $\mathbb{R}^{3} \backslash\{\mathbf{0}\}$, what can you say about a and b ?
6. Let M be an oriented $(k+l+1)$-manifold without boundary in \mathbb{R}^{n}. Let ω be a k-form and let η be an l-form, both defined in an open set of \mathbb{R}^{n} about M. Show that

$$
\int_{M} \omega \wedge d \eta=a \int_{M} d \omega \wedge \eta
$$

for some a, and determine a. (Assume M is compact.)

2 Munkres §38 (pp.320-322)

2. Let G be a vector field defined in $A=\mathbb{R}^{n} \backslash\{\mathbf{0}\}$ with $\operatorname{div} G=0$ in A.
(a) Let M_{1} and M_{2} be compact n-manifolds in \mathbb{R}^{n}, such that the origin is contained in both $M_{1} \backslash \partial M_{1}$ and $M_{2} \backslash \partial M_{2}$. Let N_{i} be the unit outward normal vector field to ∂M_{i}, for $i=1,2$. Show that

$$
\int_{\partial M_{1}}\left\langle G, N_{1}\right\rangle \mathrm{d} V=\int_{\partial M_{2}}\left\langle G, N_{2}\right\rangle \mathrm{d} V .
$$

[Hint: Consider for the case where $M_{2}=B^{n}(\epsilon)$ and is contained in $M_{1} \backslash \partial M_{1}$. See Figure 38.2 (Munkres, p.321).]

Figure 38.2
(b) Show that as M ranges over all compact n-manifolds in \mathbb{R}^{n} for which the origin is not in ∂M, the integral

$$
\int_{\partial M}\langle G, N\rangle \mathrm{d} V
$$

where N is the unit normal to ∂M pointing outwards from M, has only two possible values.
3. Let G be a vector field in $B=\mathbb{R}^{n} \backslash\{\mathbf{p}, \mathbf{q}\}$ with $\operatorname{div} G=0$ in B. As M ranges over all compact n-manifolds in \mathbb{R}^{n} for which $\{\mathbf{p}\}$ and $\{\mathbf{q}\}$ are not in ∂M, how many possible values does the integral

$$
\int_{\partial M}\langle G, N\rangle \mathrm{d} V
$$

have? (Here N is the unit normal to ∂M pointing outwards from M.)
5. Let S be the subset of \mathbb{R}^{3} consisting of the union of:
i the z-axis,
ii the unit circle $x^{2}+y^{2}=1, z=0$,
iii the points $(0, y, 0)$ with $y \geq 1$.
Let A be the open set $\mathbb{R}^{3} \backslash S$ of \mathbb{R}^{3}. Let $C_{1}, C_{2}, D_{1}, D_{2}, D_{3}$ be the oriented 1-manifolds in A that are pictured in Figure 38.3 (Munkres, p.322). Suppose that F is a vector field in A, with curl $F=\mathbf{0}$ in A, and that

$$
\int_{C_{1}}\langle F, T\rangle d s=3 \quad \text { and } \quad \int_{C_{2}}\langle F, T\rangle d s=7
$$

What can you say about the integral

$$
\int_{D_{i}}\langle F, T\rangle d s
$$

for $i=1,2,3$? Justify your answers.

Figure 38.3

3 "Ponder..."

Challenge! Why does a planimeter work? See images at
http://drorbn.net/AcademicPensieve/Classes/1617-257b-AnalysisII/Planimeter/

