MAT240: Abstract Linear Algebra Lecture:

Suppose $A \in M_{m x n}$ can be row-reduced to I. Find A^{-1}.

$$
E_{k} \ldots E_{2} E_{1} A=I \rightarrow A^{-1}=E_{k} \ldots E_{2} E_{1}
$$

Turned practical the wrong way:
i. Row reduce A to I, write all elementary matrices you've encountered.
ii. Find A^{-1} by multiplying these elementary matrices in the opposite order.
$A^{-1}=A^{-1} I=E_{k} \ldots\left(E_{2}\left(E_{1} I\right)\right)$
Moral:
A^{-1} is the result of doing to I the same row operations you did to A , to get to I.
Efficient Way:

$$
(A \mid I) \xrightarrow{\text { by row operations }}\left(I \mid A^{-1}\right)
$$

Eg. $\quad\left(\begin{array}{lll}1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 \\ 0\end{array}\right)$
Eg. $\quad\left(\begin{array}{lll}1 & 2 \\ 3 & 4 & 1\end{array} \quad 0\right.$

$$
\rightarrow\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-2 & 0 \\
3 / 2 & -1 / 2
\end{array}\right)
$$

How far can we go with row reduction?
Reduced Row Echelon Form:

1. Make the first non-zero entry in any row be 1 (the pivot).
2. In the column of every pivot, all else is 0 .
3. Going down the rows, the pivots appear further and further to the right.

Eg.

$$
\left(\begin{array}{cccccc}
1 & 0 & 2 & 9 & 0 & 2 \\
0 & 1 & 12 & -2 & 0 & e \\
0 & 0 & 0 & 0 & 1 & \sqrt{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now, with column reduction, we can get rid of all entries save the pivots. Then by column interchanges, can get to $\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right)$.

Theorem 1: The rank of an RREF matrix is the number of pivots in it = the number of non-zero rows.
Theorem 2: If $A_{m x n}$ is invertible, its RREF is $I \rightarrow$ the $(A \mid I)$ algorithm always works.
Reason: A, B is the RREF of A.
A invertible $\rightarrow R(A)=F^{n} \rightarrow \operatorname{rank} A=n$
$\rightarrow B$ has n pivots; each one is in a different column, there are n columns $\rightarrow 1$ pivot in each row and in each column.

