
Problem Set 16 — MAT257

March 8, 2017

Disclaimer—This page has been typeset by a student as a convenient con-
solidation of the homework problems. There inevitably will be mistakes;
always defer to the official handout!

∗ Update 05/03/2017: Corrected a couple typos.

Problems marked with ∗ are to be submitted for credit.

1 Munkres §30 (pp.260–262)

1. Let A be open in Rn.

(a) Show that Ωk(A) is a vector space.

(b) Show that the set of all C∞ vector fields on A is a vector space.

∗ 2. Consider the forms

ω = xy dx+ 3 dy − yz dz
η = x dx− yz2 dy + 2x dz,

in R3. Verify by direct computation that

d(dω) = 0,

d(ω ∧ η) = (dω) ∧ η − ω ∧ dη.

3. Let ω be a k-form defined in an open set A of Rn. We say that ω vanishes at x if ω(x) is the zero
tensor.

(a) Show that if ω vanishes at each x in a neighbourhood of x0, then dω vanishes at x0.

(b) Give an example to show that if ω vanishes at x0, then dω need not vanish at x0.

∗ 4. Let A = R2 \ {0}; consider the 1-form in A defined by the equation

ω =
x dx+ y dy

x2 + y2
.

(a) Show that ω is closed.
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(b) Show that ω is exact on A.

5. Prove the following:

Theorem. Let A = R2 \ {0}; let

ω =
−y dx+ x dy

x2 + y2

in A. Then ω is closed, but not exact, in A.

Proof.

(a) Show that ω is closed.

(b) Let B consist of R2 with the non-negative x-axis deleted. Show that for each (x, y) ∈ B, there is
a unique t with 0 < t < 2π such that

x =
√
x2 + y2 · cos t

y =
√
x2 + y2 · sin t;

denote this value of t by φ(x, y).

(c) Show that φ is of class C∞. [Hint: The inverse sine and inverse cosine functions are C∞ on the
interval (−1, 1).]

(d) Show that ω = dφ in B. [Hint: We have tanφ = y/x if x 6= 0 and cotφ = x/y if y 6= 0.]

(e) Show that if g is a closed 0-form in B, then g is constant in B. [Hint: Use the mean-value theorem
to show that if a is the point (−1, 0) of R2, then g(x) = g(a) for all x ∈ B.]

(f) Show that ω is not exact in A. [Hint: If ω = df in A, then f − φ is constant in B. Evaluate the
limit of f(1, y) as y approaches 0 through the positive and negative values.]

6. Let A = R2 \ {0}. Let m be a fixed positive integer. Consider the following n− 1 form in A:

η =

n∑
i=1

(−1)i−1fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where fi(x) = xi/ ‖x‖m, and where d̂xi means that the factor dxi is to be omitted.

(a) Calculate dη.

(b) For what values of m is it true that dη = 0?

∗ 7. Prove the following, which expresses d as a generalized “directional derivative”:

Theorem. Let A be open in Rn; let ω be a k − 1 form in A. Given v1, . . . ,vk ∈ Rn, define

h(x) = dω(x)
(
(x;v1), . . . , (x;vk)

)
,

gj(x) = ω(x)
(
(x;v1), . . . , (̂x;vj), . . . , (x;vk)

)
,

where â means that the component a is to be omitted. Then

h(x) =

k∑
j=1

(−1)j−1Dgj(x) · vj .

Proof.
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(a) Let X =
[
v1 · · · vk

]
. For each j, let Yj =

[
v1 · · · v̂j · · · vk

]
. Given (i, i1, . . . , ik−1), show that

detX(i, i1, . . . , ik−1) =

k∑
j=1

(−1)j−1vij detYj(i1, . . . , ik−1).

(b) Verify the theorem in the case ω = f dxI .

(c) Complete the proof.

2 Munkres §31 (pp.265–266)

1. Prove Theorems 31.1 and 31.2.

2. Note that in the case n = 2, Theorem 31.1 gives us two maps α1 and β1 from the vector fields to
1-forms. Compare them.

3. Let A be an open set in R3.

(a) Translate the equation d(dω) = 0 into two theorems about vector and scalar fields in R3.

(b) Translate the condition that A is homologically trivial in dimension k into a statement about
vector and scalar fields in A. Consider the cases k = 0, 1, 2.

∗ 4. For R4, there is a way of translating theorems about forms into more familiar language, if one allows
oneself to use matrix fields as well as vector fields and scalar fields. We outline it here. The compli-
cations involved may help you understand why the language of forms was invented to deal with Rn in
general.

A square matrix B is said to be skew-symmetric if BT = −B. Let A be an open set in R4. Let S(A)
be the set of all C∞ functions H mapping A into the set of 4 × 4 skew-symmetric matrices. If hij(x)
denotes the entry of H(x) in row i and column j, define γ2 : S(A)→ Ω2(A) by the equation

γ2(H) =
∑
i<j

hij(x)dxi ∧ dxj .

(a) Show that γ2 is a linear isomorphism.

(b) Let α0, α1, β3, β4 be defined as in Theorem 31.1. Define operators “twist” and “spin” as in the
following diagram:

∗ [See Munkres, p.266.]

such that

d ◦ α1 = γ2 ◦ twist,

d ◦ γ2 = β3 ◦ spin.

(The operators are facetious analogues in R4 of the operator “curl” in R3.)

5. The operators grad, curl, and div, and the translation operators αi and βj , seem to depend on the
choice of a basis in Rn, since the formula defining them involve the components of the vectors involved
relative to the basis e1, . . . , en in Rn. However, they in fact depend only on the inner product in Rn
and the notion of right-handedness, as the following exercise shows.

Recall that the k-volume function V (x1, . . . ,xk) depends only on the inner product in Rn. (See the
exercises of §21.)

(a) Let F (x) =
(
x; f(x)

)
be a vector field defined in an open set of Rn. Show that α1F is the unique

1-form such that
α1F (x) = (x; v) = 〈f(x),v〉.
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(b) Let G(x) =
(
x; g(x)

)
be a vector field defined in an open set of Rn. Show that βn−1G is the

unique 1-form such that

βn−1G(x)
(
(x; v1), . . . , (x; vn−1)

)
= ε · V

(
g(x),v1, . . . ,vn−1

)
,

where ε = +1 if the frame
(
g(x),v1, . . . ,vn−1

)
is right-handed, and ε = −1 otherwise.

(c) Let h be a scalar field defined in an open set of Rn. Show that βnh is the unique n-form such that

βnh(x)
(
(x; v1), . . . , (x; vn)

)
= ε · h(x) · V (v1, . . . ,vn),

where ε = +1 if (v1, . . . ,vn) is right-handed, and ε = −1 otherwise.

(d) Conclude that the operators grad and div (and curl if n = 3) depend only on the inner product in
Rn and the notion of right-handedness in Rn. [Hint: The operator d depends only on the vector
space structure of Rn.]

3 “Ponder. . . ”

Challenge! Make precise and prove Dror’s assertion from class, that if ω ∈ Ωk(Rn) and ξ1, . . . ξk+1 ∈ TxRn, then

dω(ξ1, . . . , ξk+1) = lim
ε→0

1

εk+1
ω
(
∂(εP )

)
,

where ∂(εP ) denotes the boundary of the parallelepiped spanned by εξ1, . . . , εξk+1.
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