PSet 14: Partial Solutions

DISCLAIMER: I cannot claim that what I have written here constitutes a perfect solution. Certainly some mistakes are present; hopefully these mistakes aren't too severe. I hope that my answers may serve as a guide to you when studying for the final exam.

Problem 27.1.

Part i. We claim that f is not an alternating tensor in \mathbb{R}^4 . Take $x = y = e_1 \in \mathbb{R}^4$. Then $f(x,y) = f(e_1,e_1) = 0 + 0 + 1$, whereas $f(y,x) = f(e_1,e_1) = 0 + 0 + 1 \neq -f(x,y)$. Hence, by definition, f must not an alternating tensor.

Part ii. We claim that g is not an alternating tensor in \mathbb{R}^4 . Take $x = e_1$ and $y = e_3$, both in \mathbb{R}^4 . Then $g(x,y) = g(e_1,e_3) = 1 - 0$, whereas $g(y,x) = g(e_3,e_1) = 0 - 0 \neq -g(x,y)$. Hence, by definition, g must not an alternating tensor.

Part iii. h is not an alternating tensor in \mathbb{R}^4 since it is not a tensor in \mathbb{R}^4 . We show that h fails to be linear in its first coordinate: take $x = \widetilde{x} = e_1$, and $y = e_2$. Then $h(x + \widetilde{x}, y) = 8 \cdot 1 + 0$, but $h(x, y) + h(\widetilde{x}, y) = 1 + 1 \neq h(x + \widetilde{x}, y)$.

Problem 28.1.

Part a. We first write F and G in terms of elementary tensors. $F(x, y, z) = 2x_2y_2z_1 + x_1y_5z_4 = (2\phi_{2,2,1} + \phi_{1,5,4})(x,y,z) \implies F = 2\phi_{2,2,1} + \phi_{1,5,4}$, where the ϕ terms are elementary 3-tensors corresponding to the standard basis for \mathbb{R}^5 . Similarly, $G(x,y) = (\phi_{1,3} + \phi_{3,1})(x,y) \implies G = \phi_{1,3} + \phi_{3,1}$, where the ϕ terms are elementary 2-tensors corresponding to the standard basis for \mathbb{R}^5 . Hence,

$$AF = A(2\phi_{2,2,1} + \phi_{1,5,4})$$

$$= A(2\phi_2 \otimes \phi_2 \otimes \phi_1 + \phi_1 \otimes \phi_5 \otimes \phi_4)$$

$$= 2A(\phi_2 \otimes \phi_2 \otimes \phi_1) + A(\phi_1 \otimes \phi_5 \otimes \phi_4)$$
 by linearity,
$$= 2\phi_2 \wedge \phi_2 \wedge \phi_1 + \phi_1 \wedge \phi_5 \wedge \phi_4$$
 by step 9 of Theorem 28.1,
$$= \phi_1 \wedge \phi_5 \wedge \phi_4$$

$$= -\psi_{1,4,5}$$

$$\phi_2 \wedge \phi_2 = 0 \text{ as } \phi_2 \text{ is alternating of odd order,}$$

And:

$$AG = A(\phi_{1,3}) + A(\phi_{3,1})$$
 by linearity

$$= A(\phi_1 \otimes \phi_3) + A(\phi_3 \otimes \phi_1)$$

$$= \phi_1 \wedge \phi_3 + \phi_3 \wedge \phi_1$$
 by step 9 of Theorem 28.1,

$$= \phi_1 \wedge \phi_3 + (-1)^{1 \cdot 1} \phi_1 \wedge \phi_3$$

$$= 0$$

Part b. We note that $h(w) = w_1 - 2w_3 = (\phi_1 - 2\phi_3)(w) \implies h = \phi_1 - 2\phi_3$. Then,

$$\begin{split} (AF) \wedge h &= (\phi_1 \wedge \phi_5 \wedge \phi_4) \wedge (\phi_1 - 2\phi_3), \\ &= \phi_1 \wedge \phi_5 \wedge \phi_4 \wedge \phi_1 - 2\phi_1 \wedge \phi_5 \wedge \phi_4 \wedge \phi_3 \qquad \text{by distributivity,} \\ &= (-1)^2 \phi_5 \wedge \phi_4 \wedge (\phi_1 \wedge \phi_1) - 2\phi_1 \wedge \phi_5 \wedge \phi_4 \wedge \phi_3 \qquad \text{by associativity and anticommutativity,} \\ &= -2\phi_1 \wedge \phi_5 \wedge \phi_4 \wedge \phi_3 \\ &= 2\psi_{1,3,4,5} \end{split}$$

Part c. We compute,

$$(AF)(x, y, z) = (\phi_1 \land \phi_5 \land \phi_4)(x, y, z)$$

$$= \psi_{1,5,4}(x, y, z)$$
 by Theorem 28.1 (5),
$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_5 & y_5 & z_5 \\ x_4 & y_4 & z_4 \end{vmatrix}$$

$$= x_1(y_5 z_4 - z_5 y_4) - y_1(x_5 z_4 - x_4 z_5) + z_1(x_5 y_4 - y_5 x_4).$$

Problem 28.6. Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be the linear transformation T(x) = Bx.

Part a. Let us assume that the alternating tensors ψ_J on \mathbb{R}^m are generated with respect the standard basis for \mathbb{R}^m , i.e. $\{e_1,\ldots,e_m\}$. If $I'=(i'_1,\ldots,i'_k)$, then $T^*\psi_I(e_{I'})=\psi_I(T(e_{i'_1}),\ldots,T(e_{i'_k}))=\psi_I(B_{i'_1},\ldots,B_{i'_k})$ where B_i is the *i*-th column of the matrix B. Let $B_{I'}:=(B_{i'_1}|\ldots|B_{i'_k})$, i.e. the matrix obtained by taking the columns I' of B. Now, by Theorem 27.7, we may evaluate $\psi_I(B_{I'})$ as a determinant:

$$\psi_I(B_{I'}) = \det(B_{I'}^I)$$

where $B_{I'}^I$ is the square matrix obtained by taking the rows I of the matrix $B_{I'}$. Finally, express $T^*\psi_I$ as:

$$T^*\psi_I = \sum_{[J]} c_J \psi_J.$$

Then,

$$T^*\psi_I(e_{I'}) = \sum_{[J]} c_J \psi_J(e_{I'})$$

$$= c_{I'} \qquad \text{as } \psi_J(e_I) = \delta_{IJ},$$

$$\implies \det(B_{I'}^I) = c_{I'}$$

Part b. Let $f = \sum_{[I]} d_I \psi_I$ be an alternating k-tensor on \mathbb{R}^n . Then,

$$T^*f = \sum_{[I]} d_I T^* \psi_I$$
 by linearity
$$= \sum_{[I]} d_I \left(\sum_{[J]} \det(B_J^I) \right) \psi_J$$
 by part a., and in the notation of part a.

Note also that if $I'=(i'_1,\ldots,i'_k)$, then $f(e_{I'})=\sum_{[I]}d_I\psi_I(e_{I'})=d_{I'}$. Hence,

$$T^*f = \sum_{[I]} f(e_I) \left(\sum_{[J]} \det(B_J^I) \right) \psi_J = \sum_{[I]} \sum_{[J]} f(e_I) \det(B_J^I) \psi_J.$$