$0,1,1, \cdot$
the matrices a field?
No, thong, almost.

1. x (multiplication) is not always defined.
2. many matrices ether than O, have ne inverse

3 in general: $A \cdot B \neq B \cdot A \quad$ (sometimes $A B=A A$) ie $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0\end{array}\right.$
$A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
$A \cdot B=\left(\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right)$
B. $A=\left(\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right)$

$$
A \cdot B \neq B A
$$

Tutorial Any linear transformation
$T: V \rightarrow W$ con be represented as a matrix

$$
\begin{aligned}
& \text { if }\left\{a_{1}, \ldots, e_{n}\right\} \text { - basis of } V \\
& \left\{f_{1}, \ldots, f_{m}\right\} \text {-basis of } W[T]_{e}^{f} \\
& T\left(e_{j}\right)-\sum_{i=1}^{n} a_{i j} f_{i} \rightarrow \text { we write } T=\left(\begin{array}{cc}
u_{1} & \cdots \cdots \\
\vdots & a_{1 n} \\
1 & \vdots \\
a_{m 1} & a_{m n}
\end{array}\right)
\end{aligned}
$$

(1) Write T in a matrix form

$$
\begin{aligned}
& T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad e=(1,0)\left(a_{1}\right) \quad / f=(1,0,0),(0,1,0),(a, 0,1) \\
& T\left(a_{1}, a_{2}\right)=\left(2 a_{1}-a_{2}, 3 a_{1}+4 a_{2}, a_{1}\right) \\
& T(1,0)=(2,3,1) \quad T=\left(\begin{array}{cc}
2 & -1 \\
3 & 4 \\
1 & 0
\end{array}\right) \\
& T(0,1)=(-1,4,0) \quad
\end{aligned}
$$

(2)
$T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}) \quad$ in stand bexisis

$$
\left.\begin{array}{l}
e=\left\{\begin{array}{ll}
\left.\left\{\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \\
e_{2} & c_{3}
\end{array} e_{4}\right.
\end{array}\right\} \begin{aligned}
& f=\left\{\begin{array}{ll}
a & b \\
\left.1, y, x^{2}\right\} \\
c & d
\end{array}\right)=(a+b)+(2 d) x+b x^{2} \\
& f_{1}, f_{2}, f_{3}
\end{aligned}
$$

Soln:

$$
\left.\begin{aligned}
& T\left(e_{1}\right)=T\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=1=f_{1} \\
& T\left(e_{2}\right)=T\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=1+x^{2}=f_{1}+f_{2} \\
& T\left(e_{3}\right)=T\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=0=\left\langle e_{3}\right) \operatorname{ker} T
\end{aligned} \right\rvert\, T \sim\left(\begin{array}{lll}
1 & 1 & 0
\end{array} 0\right.
$$

$T\left(e_{4}\right)=T\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=2 x=2 f_{2} \quad$ if we multiplay thi's maxrix with e_{3} $\left(\begin{array}{l}0 \\ 0 \\ b\end{array}\right)$ we get 0 matrix
3) Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$
which is given by $T(A)=A^{*}$
What is the matrix repro of T ? (in stand basis?)
Sons If $A=\left(a_{i j}\right)$, then $A^{t}=\left(a_{i j}\right)$
$T\left(e_{1}\right)=e_{-1}, T\left(e_{2}\right)=e_{3}, \quad T\left(e_{3}\right)=e_{2} \quad T\left(e_{4}\right)=e_{4}$

$$
\begin{aligned}
& \text { Then } \\
& T \sim\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { In general, } T \sin m_{n \times n}(\mathbb{K}) D, T(A)=A^{\top} \text {, basis } E_{i j} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & c \\
0 & 1 & 1 \\
1 & c \\
\vdots & 1 \\
c & &
\end{array}\right. \\
& T\left(T\left(E_{i j}\right)\right)=T\left(E_{j i}\right)=E_{i j}
\end{aligned}
$$

(4) Define $T: P_{2}(\mathbb{R}) \rightarrow m_{2 \times 2}(\mathbb{R})$ by

$$
T(f(x))=\left(\begin{array}{cc}
f^{\prime}(0) & 2(1) \\
0 & f^{\prime \prime}(3)
\end{array}\right)
$$

what is the matrix reprin of T ? (in stand basis)
So

Soln: Apply T to the basis ell's.

$$
\begin{aligned}
& e=\left\{\begin{array}{ll}
\left\{1, x, x^{2}\right\} \\
e_{1} & e_{2} e_{3}
\end{array} \quad\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}\right. \\
& T\left(e_{1}\right)=T(1)=\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)=0 f_{1}+2 f_{2}+0 f_{3}+0 f_{4} \\
& T\left(e_{2}\right)=T(x)=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=1 f_{1}+2 f_{2}+0 f_{3}+0 f_{4} \\
& T\left(e_{3}\right)=T\left(x^{2}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right)=0 f_{1}+2 f_{2}+0 f_{3}+2 f_{4} \\
& \Rightarrow T \sim\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right), \operatorname{Ex}: \operatorname{Ker}(T) \neq\{0\}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { 5) } T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R} \\
T(A)=\operatorname{tr}(A)=a_{11}+a_{n 2} \\
T\left(f_{1}\right)=1 \\
T\left(f_{2}\right)=0 \\
T\left(f_{3}\right)=0 \\
T\left(f_{4}\right)=1
\end{array}\right\} T \sim 1
$$

(6) Prove that a projection

$$
T: V \longrightarrow V
$$

can be represented by a diag. matrix proofs me have to find a basis $v^{e=\left\{e_{1, \ldots}, \operatorname{en}\right\}}$ of V^{-}sit. $[T]_{e}$ = diagonal matrix.

Let T:V $\rightarrow W \subset V$ be a procetion on $W \subset V(\operatorname{dim} W=m<n)$ ice. $\quad V=W \oplus W, \quad T(x+y)=x, x \in W, y \in W$,
$O_{b j}$; to show that \exists basis e in V s.t. T. reprit in this basis by a diag matrix.

Construction of the basis with this property l
First choose a basis of $w,\left\{e_{1}, \ldots, e_{m}\right\}$;
Then \exists a complement of this basis to a basis of $V_{1}\left\{e_{1}, \ldots, e_{m}, e_{n+1}, \ldots e_{n}\right.$ ret us calculate the matrix $[T]_{e}$

In this basis T looks like

$$
\underbrace{T\left(a_{1} e_{1}+\cdots+a_{m} e_{m}\right.}_{x \in W})+(\underbrace{\left(a_{m+1} e_{m+1}+\cdots+a_{n} e_{n}\right.}_{y \in W})=a_{1} e_{1}++a_{m} e_{m}=x
$$

So: $T\left(e_{1}\right)=e_{1} \quad T\left(e_{i}\right)=0$

$$
T\left(e_{m}\right)=e_{m} \quad m<i \leqslant n
$$

Then the matrix $[T] e$

Tn

$$
\begin{aligned}
& \text { the matrix }
\end{aligned}[T] e \text { e } \quad\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \vdots & \vdots & \vdots \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & \vdots & 0
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m} \\
a_{m+1} \\
\vdots \\
a_{n}
\end{array}\right) ?\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$$
\operatorname{din} V=\operatorname{din} W
$$

F) Show If TiV $\rightarrow W$ is a let then \exists a basis e, f. of V s.t.
$[T]_{e}^{f}$ is a diagonal matrix
proofs Let us take amy basis $=\left\{e_{1}, \ldots, e_{n}\right\}$ in V. Consider $\left\{T\left(e_{1}\right), \ldots, T\left(e_{n}\right)\right\}$. Then these vectors generate the range $\mathbb{R}(T)$ of T. Let us
 choose a basis of $\mathbb{R}(T)$ among these vectors.

Let $\left\{T\left(e_{i 1}, \ldots, T\left(e_{k}\right)\right\} k \leqslant n\right.$ be a basis of the range $R(T)$ Let is rearrange the vectors $\left\{\sum_{1}, \ldots, e n\right\}$ in such a way that they are: $\left\{e_{i 1}, \ldots, e_{i k}, e_{i k+1}, \ldots, e_{i n}\right\}\left(\xrightarrow{T}\left\{e_{i 1}, \ldots, e_{i k}\right\}\right)$ Extend the basis $\left\{T\left(e_{i 1}, \ldots, T\left(e_{i k}\right)\right\}\right.$ of $R(T)$ to a basis of W.

$$
\left\{T\left(e_{i 1}\right) \ldots T\left(e_{i k}\right), f_{k+1}, \ldots, f_{k}\right\}
$$

$f_{1}^{\prime \prime} \quad f_{k}^{\prime}$
Assertion: $[T]_{e}^{f}$ is diagonal.

