MAT401 - Problem Set 1: SOLUTIONS

Exercise $\Box 12$ -2 \Box

Observe that:

 $0 \times 6 \equiv 0 \equiv 0 \pmod{10}$

 $2 \times 6 \equiv 12 \equiv 2 \pmod{10}$

 $4 \times 6 \equiv 24 \equiv 4 \pmod{10}$

 $6 \times 6 \equiv 36 \equiv 6 \pmod{10}$

 $8 \times 6 \equiv 48 \equiv 8 \pmod{10}$

Therefore the unity is 6. ¤

Exercise□12-13□

All subrings of Z can be expressed in the form nZ for some non-negative $n \in Z$. From the textbook (pg 239, example 10) we know that nZ is a subring of Z. Suppose R is a subring of Z. If R contains only 0, then it is the same as 0Z. So suppose R contains at least one non-zero elements. Let g = gcd(R) be the greatest integer dividing all non-zero elements of R. We know $g \in R$, since the greatest common divisor of any set of numbers can be constructed by summing multiples of the elements of R. Since g generates gZ, we can conclude that gZ is a subring of R. Now suppose $\exists r \in R$ such that $r \in gZ$. This means that $\forall x \in Z$, $x \times g$ $g = r \Rightarrow g \nmid r$, which contradicts the definition of g as the greatest common divisor. Thus R is a subring of gZ, and g = gZ.

¤ □

EXERCISE \Box 12-19 \Box

Denote the centre of a ring R as $Z(R) = \{x \in R \mid ax = xa, \forall a \in R\}$. Since $\forall a \in R$, a0 = 0a, $0 \in Z(R)$ and thus Z(R) is non-empty. Let $u, v \in Z(R)$ be arbitrary. Then $\forall a \in R$, au = ua and av = va. So (u - v)a = ua - va = au - av = a(u - v), and thus $u - v \in Z(R)$.

Also, (uv)a = u(va) = u(av) = (ua)v = (au)v = a(uv), so $uv \in Z(R)$.

Therefore, by the subring test, Z(R) is a subring of R. ¤

Exercise $\Box 12-22\Box$

Denote the unity in R as I_R . To show that U(R) is a group under the multiplication operator in R, we will show that it satisfies the four properties of a group.

<u>Identity:</u> $IR \times IR = IR$, so $IR \in U(R)$. Since $\forall r \in U(R)$, $r \times IR = r$, IR is the identity in U(R).

<u>Inverse</u>: Suppose $a \in U(R)$. Then $\exists a_{-1} \in R$ such that

 $a \times a_{-1} = a_{-1} \times a = I_{R}$.

So $a_{-1} \in U(R)$, and thus every element has an inverse.

Closure: Suppose a, b \in U(R). Then were know $\exists a$ -1, b-1 \in U(R) such that $a \times a$ -1 = I_R and $b \times b$ -1 = I_R.

Since R is closed under multiplication, we know that

```
a \times b, b_{-1} \times a_{-1} \in R. So (a \times b) \times (b_{-1} \times a_{-1}) = a \times (b \times b_{-1}) \times a_{-1} = a \times a_{-1} = l_R.
Thus a \times b has an inverse in R, and is therefore in U(R). Therefore U(R) is closed
under multiplication.
Associativity: Since R is a ring, we know that
\forall a, b, c \in R, (a \times b) \times c = a \times (b \times c)
Thus \forall a, b, c \in U(R), (a \times b) \times c = a \times (b \times c).
Therefore, U(R) is a group under the multiplication of R. ¤
Exercise \Box 13-4\Box
LIST \square ALL \square ZERO \square DIVISORS \square OF \square Z<sub>20</sub>: \square
Observe □ That: □
2 \times 10 = 20 \equiv 0 \pmod{20}
4 \times 5 = 20 \equiv 0 \pmod{20}
5 \times 8 = 40 \equiv 0 \pmod{20}
6 \times 10 = 60 \equiv 0 \pmod{20}
8 \times 5 = 40 \equiv 0 \pmod{20}
10 \times 8 = 80 \equiv 0 \pmod{20}
12 \times 10 = 120 \equiv 0 \pmod{20}
14 \times 10 = 140 \equiv 0 \pmod{20}
15 \times 4 = 60 \equiv 0 \pmod{20}
16 \times 5 = 80 \equiv 0 \pmod{20}
18 \times 10 = 180 \equiv 0 \pmod{20}
S_1 = \{2,4,5,6,8,10,12,14,15,16,18\} is the set of zero divisors of Z_{20}.
S_2 = \{1,3,7,9,11,13,17,19\} is the set of units of Z_{20}.
Note: \square One \square can \square easily \square observe \square that \square \square \square = \square 8 \square = \square \square (20) \square [Euler \square Phi \square
FUNCTION |
    - All numbers which are not zero are either zero divisors or
        UNITS \square OF \square \mathbb{Z}_{20}. \square
Exercise □ 13-13 □
Show that \exists b \in R such that (1 - a) \times b = 1, where a_n = 0.
Let b = 1+a+a_2+...+a_{n-2}+a_{n-1}.
Since R is closed under both + and \times, b \in R.
Computing a \times b we get
a \times b = b - (a \times 1) - (a \times a) - \dots - (a \times a_{n-1}) = b - (a + a_2 + \dots + a_n) = 1 - a_n = 1 - 0 = 1
(taking for granted associative and commutative properties of +). Thus b is the
multiplicative inverse of 1 - a. ¤
```