MAT240: Abstract Linear Algebra Lecture

Let $A \in M_{m \times n}$ be a matrix. Let T_{A} be the linear transformation $T_{A}: F^{n} \rightarrow F^{m}$ given by:

$$
v \in F^{n}=M_{n x 1} \rightarrow A * v \in M_{m x 1}=F^{m}
$$

Question: What is $\left[T_{A}\right]_{e i}^{e j}$?

$$
\left.\left.\begin{array}{l}
{\left[T_{A}\right]_{e i}^{e j}=\left[\left[T_{A}\left(e_{1}\right)\right]_{e j}\right.} \\
\ldots
\end{array}\right]\left[T_{A}\left(e_{n}\right)\right]_{e j}\right] ~\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & A & \ldots \\
a_{m 1} & \ldots & a_{m x n}
\end{array}\right] *\left[\begin{array}{c}
1 \\
0 \\
\ldots
\end{array}\right]=\left[\begin{array}{c}
a_{11} \\
\ldots \\
T_{m 1}
\end{array}\right] .
$$

Answer: A
Another way of seeing $[T]_{\beta}^{\gamma}$:

\boldsymbol{V}	\vec{T}	\boldsymbol{W}
$\downarrow P$	(system is commutative)	$\downarrow Q$
$\boldsymbol{F}^{\boldsymbol{n}}$	$\overrightarrow{S=\left[Q \text { compose } T \text { compose } P^{-1}\right]}$	$\boldsymbol{F}^{\boldsymbol{m}}$

Proof of Question:
Need to check that:

$$
T_{A}\left(e_{j}\right)=S\left(e_{j}\right)
$$

LHS $\quad T_{A}\left(e_{j}\right)=A e_{j}=[T]_{\beta}^{\gamma}\left(e_{j}\right)=j$ th colum of $[T]_{\beta}^{\gamma}=\left[T\left(v_{j}\right)\right]_{\gamma}$
RHS $\quad S\left(e_{j}\right)=e_{j} \rightarrow v_{j} \rightarrow T\left(v_{j}\right) \rightarrow\left[T\left(v_{j}\right)\right]_{\gamma}$
Note: LHS and RHS are equal. This suffices to prove $T_{A}\left(e_{j}\right)=S\left(e_{j}\right)$
Main Topic for Today:
$c \in F \quad A, B \in M_{m x n} \rightarrow A+B, \quad c A, \quad A B$
$c \in F \quad T, S$ are linear transformations $\rightarrow T+S, \quad c T, \quad T$ compose S
Note: The above two statements are equivalent with regards to the corresponding operations.

The Good and the Bad of Matrix Multiplication:

Good	Bad
$\begin{aligned} & \text { 1. } A+B=B+A \\ & A+(B+C)=(A+B)+C \\ & M_{m \times n} \text { is a v.S. } \\ & L(V, W) \text { is a V.s. } \end{aligned}$	1. $A+B$ is defined only if dimensions match
$\begin{gathered} \text { 2. (AB)C=A(BC) (when it makes sense) } \\ \leftrightarrow\left(T_{A} \text { compose } T_{B}\right) \text { compose } T_{C} \\ \left.=T_{A} \text { compose } T_{B} \text { (compose } T_{C}\right) \\ \text { Composition is always associative! } \end{gathered}$	2. $A B$ is defined only when: (\# columns of A) $=(\#$ rows of $B)$
3. $A^{-1} \exists$ sometimes.	3. $A \neq 0$ does not imply $\exists A^{-1}$ $A B \neq B A$
4. $(A+B) C=A C+B C$	

