MAT240: Abstract Linear Algebra Lecture

Let $A \in M_{mxn}$ be a matrix. Let T_A be the linear transformation $T_A: F^n \to F^m$ given by:

$$v \in F^n = M_{nx1} \rightarrow A * v \in M_{mx1} = F^m$$

Question: What is $[T_A]_{ei}^{ej}$?

$$[T_A]_{ei}^{ej} = [[T_A(e_1)]_{ej} \dots [T_A(e_n)]_{ej}]$$

$$T_A(e_i) = \begin{bmatrix} a_{11} \dots a_{1n} \\ \dots & A & \dots \\ a_{m1} \dots & a_{mxn} \end{bmatrix} * \begin{bmatrix} 1 \\ 0 \\ \dots \end{bmatrix} = \begin{bmatrix} a_{11} \\ \dots \\ a_{m1} \end{bmatrix}$$

$$T_A(e_i) = [c_1 \dots c_n] * \begin{bmatrix} 0 \\ \dots \\ 1 \end{bmatrix} = [c_n]$$

 $T_A(e_i) = c_i$ in general

Answer: A

Another way of seeing $[T]^{\gamma}_{\beta}$:

$$\begin{array}{ccc} V & \vec{T} & W \\ \downarrow P & (system \ is \ commutative) & \downarrow Q \\ F^n & \overline{S = [Q \ compose \ T \ compose \ P^{-1}]} & F^m \end{array}$$

Proof of Question:

Need to check that:

$$T_A(e_j) = S(e_j)$$

LHS $T_A(e_j) = Ae_j = [T]^{\gamma}_{\beta}(e_j) = jth \ colum \ of \ [T]^{\gamma}_{\beta} = [T(v_j)]_{\gamma}$

RHS $S(e_j) = e_j \rightarrow v_j \rightarrow T(v_j) \rightarrow [T(v_j)]_{\gamma}$

Note: LHS and RHS are equal. This suffices to prove $T_A(e_j) = S(e_j)$

Main Topic for Today:

 $c \in F \quad A,B \in M_{mxn} \rightarrow A+B, \qquad cA, \qquad AB$

 $c \in F$ T, S are linear transformations $\rightarrow T + S$, cT, T compose S

Note: The above two statements are equivalent with regards to the corresponding operations.

The Good and the Bad of Matrix Multiplication:

Good	Bad
1.A + B = B + A	1.A + B is defined only if dimensions match
A + (B + C) = (A + B) + C	
M_{mxn} is a V.S.	
L(V, W) is a V.S.	
2. $(AB)C = A(BC)$ (when it makes sense)	2. <i>AB</i> is defined only when:
\leftrightarrow (T_A compose T_B) compose T_C	$(\# \ columns \ of \ A) = (\# \ rows \ of \ B)$
$= T_A \text{ compose } T_B \text{ (compose } T_C)$	
Composition is always associative!	
3. $A^{-1} \exists$ sometimes.	3. $A \neq 0$ does not imply $\exists A^{-1}$
	$AB \neq BA$
4. (A+B)C = AC + BC	