MAT240: Abstract Linear Algebra Lecture:

Apparently, the next class will be awful.
In general, variables $x_{1} \ldots x_{n} a_{i j} \in F \quad b_{1} \ldots b_{m} \in F$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

$A=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right), \quad x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$, (unknown vector), $b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in F^{m}$
$\rightarrow A x=b$
Solve for the coordinates of unknown vector.
If $b=0 \rightarrow A x=0$ homogeneous
If $b \neq 0 \rightarrow A x=b$ inhomogeneous

If lucky, A is invertible, i.e, there is A^{-1} s.t. $A^{-1} A=I$

$$
A x=b \rightarrow A^{-1} A=A^{-1} b \rightarrow x=A^{-1} b
$$

So equation has a unique solution and it is $x=A^{-1} b$
$\underline{\text { Observations regarding the homogeneous case }(A x=0): ~}$

1. $A x=0 \leftrightarrow T_{A}(x)=0$

$$
x \in \operatorname{nullspace}\left(T_{A}\right)=N\left(T_{A}\right)=\operatorname{Ker}\left(T_{A}\right)=N(A)=\operatorname{Ker}(A)
$$

2. The set of solutions in $N(A)$, is a subspace of F^{n}.

$$
\text { dimension }(\text { solution })=\text { nullity }(A)
$$

3. 0 is always a solution.

Observations regarding the inhomogeneous case $(A x=b)$:

1. Solutions exist iff $b \in R(A)=\operatorname{image}(A)=\operatorname{column}-\operatorname{span}(A)$
2. If x_{0} is a solution of $(A x=b)$, then x_{1} is a solution too if $x_{1}=x_{0}+x$ where x is a solution of $A x=0$.
Proof:

$$
\begin{aligned}
& \text { Write } x_{1}=x_{0}+x \\
& x_{1} \text { is a solution } \leftrightarrow A x_{1}=b \leftrightarrow A\left(x_{0}-x\right)=b \leftrightarrow A x_{0}+A x=b \leftrightarrow b+A x= \\
& b \leftrightarrow A x=0
\end{aligned}
$$

Moral: To find all solutions of $A x=b$, find one solution and add to it all solutions of $A x=0$ Consider geometric examples in R^{3}. For $A x=0$ consider the solution to be a plane passing through the origin. For $A x=b$ consider the solution to be a plane travelling through b.

$$
A x=b \leftrightarrow E_{1} A x=E_{1} b \leftrightarrow E_{2} E_{1} A x=E_{2} E_{1} b \leftrightarrow C x=d
$$

Where C is row-reduced and d is the result of applying same operations to b .
$(A \mid b) \xrightarrow{\text { row reduce }}(C \mid d)$
Example: solve $C x=d$ where:

$$
C=\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right)
$$

Note: the above matrix A represents the system of linear equations:

$$
\begin{aligned}
& x_{1}+2 x_{3}-2 x_{5}=d_{1} \\
& x_{2}-x_{3}+x_{5}=d_{2} \\
& x_{4}-2 x_{5}=d_{3} \\
& 0=d_{4}
\end{aligned}
$$

$$
\text { If } d_{4} \neq 0, \text { no solutions assume } d_{4}=0
$$

The following is a general solution to $C x=0$:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{5}\left(\begin{array}{c}
2 \\
-1 \\
0 \\
2 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

Finally:

$$
\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right)
$$

The pivotal columns contain a "pivot", that is to say a leading 1. Non-pivotal columns do not contain a pivot. In this matrix, the pivotal variables (the variables corresponding to a pivotal column) are x_{1}, x_{2}, x_{4}. The free variables (the variables not corresponding to a pivotal column) are x_{3}, x_{5}. In addition, d_{1}, d_{2}, d_{3} are pivotal rows, while d_{4} is a non-pivotal row.

1. A solution exists only if the d_{i} 's in the non-pivotal rows are all 0 .
2. In that case, the "free" variables corresponding to non-pivotal columns can be set arbitrarily, and other variables are fixed by the equations.

Eg.

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+x_{3}+4 x_{4}-9 x_{5}=17 \\
& x_{1}+x_{2}+x_{3}+x_{4}-3 x_{5}=6 \\
& x_{1}+x_{2}+x_{3}+2 x_{4}-5 x_{5}=8 \\
& 2 x_{1}+2 x_{2}+2 x_{3}+3 x_{4}-8 x_{5}=14
\end{aligned}
$$

$$
\rightarrow\left(\begin{array}{llllll}
2 & 2 & 1 & 4 & -9 & 17 \\
1 & 1 & 1 & 1 & -3 & 6 \\
1 & 1 & 1 & 2 & -5 & 8 \\
2 & 2 & 2 & 3 & -8 & 14
\end{array}\right) \xrightarrow{\text { row reduction }}\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & -2 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

\therefore the general solution is:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{5}\left(\begin{array}{c}
2 \\
-1 \\
0 \\
2 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

