MAT240; Abstract Linear Algebra Lecture

Goal: Every v.s. has a basis. So while we don't *have* to work in coordinates, we always can.

$$Span(S) = \left\{ \sum_{i=1}^{n} a_i u_i : a_i \in F, u_i \in S \right\}$$

Proposition:

1. Span(S) is a subspace of V.

$$7\sum_{i} a_{i}u_{i} = \sum_{i} (7a_{i})u_{i}$$
$$w_{i} = \{u_{i} \ i \leq n, v_{i-n} \ i > n\}$$
$$= \sum_{i} c_{i}w_{i}$$

2. If $S_1 \subset Span(S_2)$, then $Span(S_1) \subset Span(S_2)$

$$Span(S_2) = W \subset V \rightarrow S_1 \subset W \rightarrow Span(S_1) \subset W = Span(S_2)$$

Definition:

A subset $S \subset V$ is called ("wasteful") linearly independent if $\exists (scalars)a_i \in F \& \exists distinct u_i \in S \text{ s.t.}$

$$a_1u_1+\cdots a_nu_n=\sum a_iu_i=0$$
 and not all a_i 's are 0.

Definition:

 $S \subset V$ is linearly independent if it is not linearly dependent.

$$\leftrightarrow \sum a_i u_i = 0 \rightarrow \forall i \ a_i = 0, \ a_i \in F \ and \ u_i \in S$$

Example:

In
$$M_{mxn} = V$$

 $S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is linearly independent

$$a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow a = 0, b = 0, c = 0, d = 0$$

Comments:

- 1. $0 = \{ \}$ is linearly independent
- 2. $\{u\}$; $u \in V$ is independent unless u = 0, but if u = 0 is dependent.
- 3. Suppose $S_1 \subset S_2 \subset V$
 - a. If S_1 is linearly dependent, S_2 is linearly dependent.
 - b. If S_1 is linearly independent, know not about S_2 .
 - c. If S_2 is linearly independent, so is S_1 .
 - d. If S_2 is linearly dependent, know not about S_1 .
- 4. If S is linearly independent and $u \in V \setminus S$ then $S \cup \{u\}$ is linearly dependent iff u is a linear combination of elements of S.

$$\leftrightarrow u \in Span(S)$$

Proof: Suppose $u \in Span(S) \rightarrow u = \sum a_i u_i \quad a_i \in F, \ u_i \in S \ (distinct)$

 $\leftrightarrow 1u - \sum a_i u_i = 0$ (non-trivial l.c. of distinct elements of $S \cup \{u\}$

 $\rightarrow S \cup \{u\}$ is linearly dependent.