MAT240; Abstract Linear Algebra Lecture

Goal: Every v.s. has a basis. So while we don't have to work in coordinates, we always can.

$$
\operatorname{Span}(S)=\left\{\sum_{i=1}^{n} a_{i} u_{i}: a_{i} \in F, u_{i} \in S\right\}
$$

Proposition:

1. $\operatorname{Span}(\mathrm{S})$ is a subspace of V .

$$
\begin{gathered}
7 \sum a_{i} u_{i}=\sum\left(7 a_{i}\right) u_{i} \\
w_{i}=\left\{u_{i} \quad i \leq n, v_{i-n} i>n\right\} \\
=\sum c_{i} w_{i}
\end{gathered}
$$

2. If $S_{1} \subset \operatorname{Span}\left(S_{2}\right)$, then $\operatorname{Span}\left(S_{1}\right) \subset \operatorname{Span}\left(S_{2}\right)$

$$
\operatorname{Span}\left(S_{2}\right)=W \subset V \rightarrow S_{1} \subset W \rightarrow \operatorname{Span}\left(S_{1}\right) \subset W=\operatorname{Span}\left(S_{2}\right)
$$

Definition:
A subset $S \subset V$ is called ("wasteful") linearly independent if \exists (scalars) $a_{i} \in$ $F \& \exists$ distinct $u_{i} \in S$ s.t.:

$$
a_{1} u_{1}+\cdots a_{n} u_{n}=\sum a_{i} u_{i}=0 \text { and not all } a_{i}{ }^{\prime} \text { s are } 0 .
$$

Definition:
$S \subset V$ is linearly independent if it is not linearly dependent.

$$
\leftrightarrow \sum a_{i} u_{i}=0 \rightarrow \forall i a_{i}=0, a_{i} \in F \text { and } u_{i} \in S
$$

Example:

$$
\begin{aligned}
& \text { In } M_{m x n}=V \\
& S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \text { is linearly independent }
\end{aligned}
$$

$$
\begin{gathered}
a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \rightarrow a=0, b=0, c=0, d=0
\end{gathered}
$$

Comments:

1. $0=\{\quad\}$ is linearly independent
2. $\{u\} ; u \in V$ is independent unless $u=0$, but if $u=0$ is dependent.
3. Suppose $S_{1} \subset S_{2} \subset V$
a. If S_{1} is linearly dependent, S_{2} is linearly dependent.
b. If S_{1} is linearly independent, know not about S_{2}.
c. If S_{2} is linearly independent, so is S_{1}.
d. If S_{2} is linearly dependent, know not about S_{1}.
4. If S is linearly independent and $u \in V \backslash S$ then $S \cup\{u\}$ is linearly dependent iff u is a linear combination of elements of S.

$$
\leftrightarrow u \in \operatorname{Span}(S)
$$

Proof: Suppose $u \in \operatorname{Span}(S) \rightarrow u=\sum a_{i} u_{i} \quad a_{i} \in F, u_{i} \in S$ (distinct)
$\leftrightarrow 1 u-\sum a_{i} u_{i}=0$ (non-trivial I.c. of distinct elements of $S \cup\{u\}$
$\rightarrow S \cup\{u\}$ is linearly dependent.

