List of Theorems and Defined Terms

Function □ One-to-One \Box onto **Field** \Box Five properties □ Theorems \Box Cancellation laws \Box 0, 1 unique $\Box a \times 0 = 0$ $\Box \ (-a) \times b = a \times (-b) = -(a \times b), \ (-a) \times (-b) = a \times b$ \Box 0⁻¹ doesn't exist □ ... \Box Complex Numbers \Box Addition, multiplication, is a field \Box The complex conjugate \Box The conjugate of the conjugate of z = z□ ... \Box Absolute value $\Box \ |zw| = |z| \times |w|, |\frac{z}{w}| = \frac{|z|}{|w|}, |z+w| \le |z| + |w|, |z| - |w| \le |z+w|$ $\Box z = e^{i\theta}$ □ Fundamental theorem of algebra (The proof in the book uses things we have not covered): Suppose that $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$ is a polynomial in P(C) of degree $n \ge 1$. Then p(z) has a zero. □ Vector Space □ 8 Properties □ Theorems \Box Cancellation law for vector addition \Box 0_v is unique, -x is unique $\Box 0x = 0, (-a)x = -(ax) = a(-x), a0 = 0$ □ Subspaces □ Four properties \Box One redundant □ Theorems \Box A subset W of V is a subspace of v iff $0 \in W$, $x + y \in W$ if $x \in W$ and $y \in W$, $cx \in W$ if $c \in F$ and $x \in W$ \Box The intersection of subspaces of V is a subspace of V □ The union of two subspaces of V is a subspace of V iff one contains the other □ Linear Combinations \Box Span(S) \Box Theorem: Span(S) is a subspace of V, if a subspace contains S, it contains Span(S) □ Generating/Spanning a vector space □ Linear Dependence / Linear Independence \Box Trivial representation of 0 \Box linear (in)dependence of $\emptyset, \{0\}, \{a\} : a \neq 0$ □ Theorems \Box let $S_1 \subseteq S_2 \subseteq V$ If S_1 is linearly dependent, then S_2 is linearly dependent. If S_2 is linearly independent. dent, then S_1 is linearly independent. \Box Let S be a linearly independent subset of V, and let v be a vector in V not in S. Then $S \cup \{v\}$ is linearly dependent iff $v \in span(S)$

Basis

 \Box Theorems

- \Box let $\beta = \{u_1, u_2, ..., u_n\}$ be a subset of V. Then β is a basis for V iff all elements in V as a linear combination of vectors in β in only one way
- \Box If V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.
- □ Replacement Theorem: Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \le n$ and there exists a subset H of G containing exactly n m vectors such that $L \cup H$ generates V
 - \Box Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.
 - \Box Let V be a vector space with dimension n:
 - \Box Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
 - \Box Any linearly independent subset of V that contains exactly n vectors is a basis for V.
 - \Box Every linearly independent subset of V can be extended to a basis for V.

□ Dimensions

- □ Finite Dimensional, Infinite dimensional
- □ Theorems (We haven't gone over these in class yet, I don't know if they are valid subject matter for the term test)
 - \Box Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $dim(W) \leq dim(V)$. Moreover, if dim(W) = dim(V), then V = W.
 - \Box If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.