List of Theorems and Defined Terms

\square Function

One-to-Oneonto\square Field
\square Five propertiesTheoremsCancellation laws0,1 unique$a \times 0=0$$(-a) \times b=a \times(-b)=-(a \times b),(-a) \times(-b)=a \times b$$0^{-1}$ doesn't exist

\square Complex Numbers

Addition, multiplication, is a fieldThe complex conjugate
\square The conjugate of the conjugate of $\mathrm{z}=\mathrm{z}$
\square Absolute value
$\square|z w|=|z| \times|w|,\left|\frac{z}{w}\right|=\frac{|z|}{|w|},|z+w| \leq|z|+|w|,|z|-|w| \leq|z+w|$$z=e^{i \theta}$Fundamental theorem of algebra (The proof in the book uses things we have not covered):
Suppose that $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ is a polynomial in $\mathrm{P}(\mathrm{C})$ of degree $n \geq 1$. Then $\mathrm{p}(\mathrm{z})$ has a zero.
\square Vector Space
$\square 8$ PropertiesTheorems
\square Cancellation law for vector addition0_{v} is unique, -x is unique
$\square 0 x=0,(-a) x=-(a x)=a(-x), a 0=0$
Subspaces
\square Four properties
\square One redundant
\square Theorems
\square A subset W of V is a subspace of v iff $0 \in W, x+y \in W$ if $x \in W$ and $y \in W, c x \in W$ if $c \in F$ and $x \in W$The intersection of subspaces of V is a subspace of VThe union of two subspaces of V is a subspace of V iff one contains the other

Linear Combinations

$\square \operatorname{Span}(\mathrm{S})$
\square Theorem: $\operatorname{Span}(S)$ is a subspace of V, if a subspace contains S, it contains $\operatorname{Span}(S)$
\square Generating/Spanning a vector space
\square Linear Dependence / Linear Independence
\square Trivial representation of 0
\square linear (in)dependence of $\emptyset,\{0\},\{a\}: a \neq 0$Theorems
\square let $S_{1} \subseteq S_{2} \subseteq V$ If S_{1} is linearly dependent, then S_{2} is linearly dependent. If S_{2} is linearly independent, then S_{1} is linearly independent.
\square Let S be a linearly independent subset of V , and let v be a vector in V not in S . Then $S \cup\{v\}$ is linearly dependent iff $v \in \operatorname{span}(S)$

Basis

\square Theoremslet $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of V . Then β is a basis for V iff all elements in V as a linear combination of vectors in β in only one wayIf V is generated by a finite set S , then some subset of S is a basis for V . Hence V has a finite basis.Replacement Theorem: Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $\mathrm{n}-\mathrm{m}$ vectors such that $L \cup H$ generates VLet V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.Let V be a vector space with dimension n :Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V .Any linearly independent subset of V that contains exactly n vectors is a basis for V .Every linearly independent subset of V can be extended to a basis for V .

Dimensions

Finite Dimensional, Infinite dimensionalTheorems (We haven't gone over these in class yet, I don't know if they are valid subject matter for the term test)Let W be a subspace of a finite-dimensional vector space V . Then W is finite-dimensional and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $V=W$.If W is a subspace of a finite-dimensional vector space V , then any basis for W can be extended to a basis for V .

