Homework 2

MAT1100

Due: November 6, 2014
Ling-SANG TsE

Solution to Problem 1

We first prove Part 2.
Claim 1: $(a)(0)=0$.
Proof of claim 1:
Since 0 is the additive identity,

$$
(a)(0)=(a)(0+0),
$$

and by the distributive property,

$$
(a)(0)=(a)(0+0)=(a)(0)+(a)(0)
$$

Subtracting both sides by $(\mathrm{a})(0),(\mathrm{a})(0)=0$.
Claim 2: $-\left(a^{2}\right)=(-a)(a)$.
Proof of claim 2:
To show that $-\left(a^{2}\right)=(-a)(a)$, we show that $(-\mathrm{a})(\mathrm{a})$ is the additive inverse of a^{2}.

$$
\begin{aligned}
a^{2}+(-a)(a) & =(a)(a)+(-a)(a) \\
& =(a)[a+(-a)] \text { by the distributive property } \\
& =(a)(0) \text { since }(-\mathrm{a}) \text { is the additive inverse of a } \\
& =0 \text { by Claim } 1
\end{aligned}
$$

Therefore, $-\left(a^{2}\right)=(-a)(a)$.
Then

$$
\begin{aligned}
-\left(a^{2}\right)+(-a)^{2} & =(-a)(a)+(-a)(-a) \\
& =(-a)(a+(-a)) \text { by the distributive property } \\
& =(-a)(0) \text { since }(-a) \text { is the additive inverse of a } \\
& =0 \text { by Claim } 1
\end{aligned}
$$

Therefore, $(-a)^{2}$ is also an additive inverse of $-\left(a^{2}\right)$. But a^{2} is also an additive inverse of a^{2} by definition, and additive inverses are unique, so $(-a)^{2}=a^{2}$.

To prove Part 1 , letting $\mathrm{a}=1$, we have $(-1)^{2}=1$.

Solution to Problem 2

1. Let R be a finite integral domain with n elements, and let $r_{1}, r_{2}, \ldots, r_{n}$ enumerate the elements in R. To show that R is a field, we must show that if $\mathrm{x} \in R$ and $x \neq 0$, then x has an inverse.

Consider the set $\left\{x r_{1}, . ., x r_{n}\right\}$.
Claim: $x r_{i} \neq x r_{j}$ for any $i \neq j$.
Proof of claim:
Suppose $x r_{i}=x r_{j}$. Then

$$
x r_{i}-x r_{j}=0 \Leftrightarrow x\left(r_{i}-r_{j}\right)=0
$$

Then $x=0$ or $\left(r_{i}-r_{j}\right)=0$ because R is an integral domain. Since $x \neq 0, r_{i}=r_{j}$, so the claim is proven.

Then $x r_{1}, . ., x r_{n}$ are n distinct elements in R, so $x r_{i}=1$ for some r_{i}. i.e., x has an inverse. Since x was arbitrary, so R is a field.
2. Suppose R is a finite commutative ring, and let P be a prime ideal. Then R / P is an integral domain (this is a theorem from the lecture notes, that if I is an ideal, R/I is an integral domain if and only if I is a prime ideal). But since R is finite, R / P is also finite, so R / P is a finite integral domain. From part a), R / P is then a field, so P is maximal (this is also a theorem from the lecture notes, that if I is an ideal, R / I is a field if and only if I is a maximal ideal).

Solution to Problem 3

1. Suppose R is a Boolean ring, and suppose $x, y \in R$.

Then

$$
x^{2}+y^{2}=(x+y)=(x+y)^{2}=x^{2}+y^{2}+x y+y x
$$

Subtracting x^{2}, y^{2}, and xy on both sides,

$$
-x y=y x
$$

Then using the last problem, $(-x y)^{2}=(x y)^{2}$, so

$$
y x=-x y=(-x y)^{2}=(x y)^{2}=x y .
$$

Since x, y was arbitrary, so R is a commutative ring.
2. Suppose R is a Boolean ring and an integral domain, and suppose $x \in R$.

Since R is a Boolean ring, $x^{2}=x$, so $x^{2}-x=x(x-1)=0 . R$ is an integral domain, so $\mathrm{x}=0$ or $\mathrm{x}-1=0$. i.e, $\mathrm{x}=0$ or $\mathrm{x}=1$. Also, $0 \neq 1$, since R is an integral domain, so 0 or 1 are the only two possible elements in R. Therefore $R=\mathbb{Z} / 2$.

Solution to Problem 4

Let R be a commutative ring, and let $\mathrm{N}(\mathrm{R})$ be the set of all nilpotent elements of R .
To show that $N(R)$ is a subring:
Let $\mathrm{x}, \mathrm{y}=\mathrm{N}(\mathrm{R})$, so $x^{n}=y^{m}=0$ for some $\mathrm{n}, \mathrm{m} \in \mathbb{Z}$. Then since R is commutative,

$$
\begin{aligned}
(x-y)^{n+m} & =\sum_{i}^{n+m} x^{i}(-y)^{n+m-i} \\
& =\sum_{i=1}^{n-1}(-1)^{n+m-i} x^{i} y^{n+m-i}+\sum_{i=n}^{n+m}(-1)^{n+m-i} x^{i} y^{n+m-i} \\
& =0
\end{aligned}
$$

To show that the last equality holds:
In the left summation, $n+m-i \geq m$ for all $1 \leq i \leq n-1$, so $y^{n+m-i}=0$ for all $1 \leq i \leq n-1$, so $\sum_{i=1}^{n-1}(-1)^{n+m-i} x^{i} y^{n+m-i}=0$.

In the right summation, $i \geq n$ for all $n \leq i \leq n+m$, so $x^{i}=0$ for all $n \leq i \leq n+m$, so $\sum_{i=n}^{n+m}(-1)^{n+m-i} x^{i} y^{n+m-i}=0$.

Therefore, $x-y$ is nilpotent, and so $N(R)$ is a subring.

To show that $\mathrm{N}(\mathrm{R})$ is an ideal:
Let $r \in R, x \in N(R)$, so $x^{n}=0$ for some $n \in \mathbb{Z}$.
Then $(r x)^{n}=r^{n} x^{n}=r^{n}(0)=0$, since R is commutative, so $r x \in N(R)$.
Therefore, $N(R)$ is an ideal.
2. Consider the non-commutative ring $M_{2}(/ Z)$, the 2×2 matrices.

Let

$$
x=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and

$$
y=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Then $x^{2}=y^{2}=0$, but

$$
x+y=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

so

$$
(x+y)^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

is the identity matrix, so $\mathrm{x}+\mathrm{y}$ is not nilpotent.

Solution to Problem 5

(\Longrightarrow)
We prove this by induction on the degree of f . Suppose $\mathrm{f}(\mathrm{x})$ is invertible, and let $\mathrm{g}(\mathrm{x})=$ $b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}$ be its inverse.

Base case: Suppose $\mathrm{f}=a_{0}$ and $f \in A[x]$ is invertible. If $a_{0}\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}\right)=1$, then $a_{0} b_{0}=1$, so a_{0} is a unit, and trivially, all other coefficients of f is nilpotent.

Now, assume that for any $p(x) \in A[x]$ such that $\mathrm{p}(\mathrm{x})$ has degree $\mathrm{n}-1$ and $\mathrm{p}(\mathrm{x})$ is invertible, then p_{0} is a unit and all other coefficients are nilpotent. We prove for $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\ldots+a_{n} x^{n}$, that a_{0} is a unit and all other a_{i} 's are nilpotent:

$$
\begin{aligned}
f \in A[x] \text { is invertible } & \Leftrightarrow\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n} x^{n}\right)=1 \\
& \text { for some } b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{m} x^{m} \in A[x] \\
& \Leftrightarrow \sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} b_{j} x^{i+j}=1
\end{aligned}
$$

Matching the coefficients of the constant terms on both sides of the equation, $a_{0} b_{0}=1$, so a_{0} is invertible.

To show that a_{n} is nilpotent:
Claim: $a_{n}^{r+1} b_{m-r}=0$ for all $0 \leq r \leq m$.
Proof of claim by induction:
Base case: Take $\mathrm{r}=0$. Since the coefficients of x_{n+m} on both sides is 0 , so $a_{n} b_{m}=0$.
Now, assume that $a_{n}^{r+1} b_{m-r}=0$ for $0 \leq r \leq k-1$, and we show that $a_{n}^{k} b_{m-k}=0$.

$$
\begin{aligned}
\sum_{j=0}^{k} a_{j} b_{k-j}=0 & \Longrightarrow \sum_{j=0}^{k} a_{n}^{k} a_{j} b_{k-j}=0 \\
& \Longrightarrow a_{n}^{k+1} b_{k}=0 \text { since } a_{n}^{r+1} b_{m-r}=0 \text { for } 0 \leq r-1 \leq k
\end{aligned}
$$

So the claim holds.
Since the claim holds for $\mathrm{r}=\mathrm{m}, a_{n}^{m+1} b_{0}=0$. But $a_{0} b_{0}=1$, so since R is a commutative ring,

$$
a_{n}^{m+1}=a_{n}^{m+1} a_{0} b_{0}=a_{0} a_{n}^{m+1} b_{0}=a_{0}(0)=0
$$

Therefore, a_{n} is nilpotent.
To show that $a_{1}, . ., a_{n}-1$ are nilpotent:

Consider $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})-a_{n} x^{n}$.
Claim: $\mathrm{h}(\mathrm{x})$ is invertible.
Proof of claim:

Consider $\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) a_{n} x^{n}=1-\mathrm{g}(\mathrm{x}) a_{n} x^{n}$.
Note that $\mathrm{g}(\mathrm{x}) a_{n} x^{n}$ is nilpotent, since $\mathrm{N}(\mathrm{R})$ is a an ideal and a_{n} is nilpotent. Then $\left(g(x) a_{n} x^{n}\right)^{m}$ $=0$ for some integer m .

Then

$$
\begin{aligned}
& (g(x) h(x))\left(1-g(x) a_{n} x^{n}+\left(g(x) a_{n} x^{n}\right)^{2}-\ldots+(-1)^{m-1}\left(g(x) a_{n} x^{n}\right)^{m-1}\right) \\
& =\left(1-g(x) a_{n} x^{n}\right)\left(1+g(x) a_{n} x^{n}-\left(g(x) a_{n} x^{n}\right)^{2}-\ldots+(-1)^{m-2}\left(g(x) a_{n} x^{n}\right)^{m-1}\right) \\
& =1+g(x) a_{n} x^{n}-\left(g(x) a_{n} x^{n}\right)^{2}-\ldots+(-1)^{m-2}\left(g(x) a_{n} x^{n}\right)^{m-1} \\
& -g(x) a_{n} x^{n}\left(1-g(x) a_{n} x^{n}+\left(g(x) a_{n} x^{n}\right)^{2}-\ldots+(-1)^{m-1}\left(g(x) a_{n} x^{n}\right)^{m-1}\right) \\
& =1+(-1)^{m-2}\left(g(x) a_{n} x^{n}\right)^{m} \\
& =1
\end{aligned}
$$

Therefore, $(g(x))\left(1-g(x) a_{n} x^{n}+\left(g(x) a_{n} x^{n}\right)^{2}-\ldots+(-1)^{m-1}\left(g(x) a_{n} x^{n}\right)^{m-1}\right)$ is an inverse for $\mathrm{h}(\mathrm{x})$, so $\mathrm{h}(\mathrm{x})$ is invertible, and so the claim holds.

Then $\mathrm{h}(\mathrm{x})=a_{0}+\ldots+a_{n-1} x^{n-1}$ is a polynomial of degree $\mathrm{n}-1$, so by assumption in the induction on the degree of $\mathrm{f}, a_{1}, \ldots, a_{n-1}$ are all nilpotent.
(\Longleftarrow)
Suppose $f=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in A[x]$, with a_{0} a unit and the rest of the coefficients nilpotent. Then let b_{0} be such that $a_{0} b_{0}=1$ and $a_{i}^{m}=0$ for the rest of the coefficients $a_{i}^{\prime} s$. i.e., $\left(f(x)-a_{0}\right)^{m}=0$.

$$
\begin{aligned}
& \left.b_{0} f(x)\left(1+b_{0}\left[\left(f(x)-a_{0}\right)-\left(f(x)-a_{0}\right)^{2}-\ldots+(-1)^{m-2}\left(f(x)-a_{0}\right)^{m-1}\right)\right]\right) \\
& \left.=\left(1-\left(b_{0}\right)\left(f(x)-a_{0}\right)\right)\left(1+b_{0}\left[\left(f(x)-a_{0}\right)-\left(f(x)-a_{0}\right)^{2}-\ldots+(-1)^{m-2}\left(f(x)-a_{0}\right)^{m-1}\right)\right]\right) \\
& \left.=\left(1-b_{0}\left[\left(f(x)-a_{0}\right)+\left(f(x)-a_{0}\right)^{2}-\ldots+(-1)^{m-2}\left(f(x)-a_{0}\right)^{m-1}\right)\right]\right)- \\
& \left.\left[b_{0}\left(f(x)-a_{0}\right)\right]\left(1-b_{0}\left[\left(f(x)-a_{0}\right)+\left(f(x)-a_{0}\right)^{2}-\ldots+(-1)^{m-2}\left(f(x)-a_{0}\right)^{m-1}\right)\right]\right) \\
& =1+(-1)^{m-2}\left[b_{0}\left(f(x)-a_{0}\right)\right]^{m} \\
& =1
\end{aligned}
$$

Therefore, $\left.b_{0}\left(1+b_{0}\left[\left(f(x)-a_{0}\right)-\left(f(x)-a_{0}\right)^{2}-\ldots+(-1)^{m-2}\left(f(x)-a_{0}\right)^{m-1}\right)\right]\right)$ is an inverse for $\mathrm{f}(\mathrm{x})$, so f is invertible in $A[x]$.

