MAT240: Abstract Linear Algebra Lecture:

Let $A \in M_{mxn}$ be a matrix. Let T_A be the linear transformation $T_A: F^n \to F^m$ given by:

$$v \in F^n = M_{nx\,1} \to A \ast v \in M_{mx\,1} = F^m$$

Good	Bad
1.A + B = B + A	1.A + B is defined only if dimensions match
A + (B + C) = (A + B) + C	
M_{mxn} is a V.S.	
L(V, W) is a V.S.	
2. $(AB)C = A(BC)$ (when it makes sense)	2. <i>AB</i> is defined only when:
\leftrightarrow (T_A compose T_B) compose T_C	$(\# \ columns \ of \ A) = (\# \ rows \ of \ B)$
$= T_A \ compose \ T_B \ (compose \ T_C)$	
Composition is always associative!	
3. $\forall n \exists I_n \in M_{mxn}$ s.t.	3. $A \neq 0$ does not imply $\exists A^{-1}$
$A * I_n = A$, $I_m * A = A$	$AB \neq BA$
$A \in M_{mxn}$	
Proof:	
$v \xrightarrow{l} v$	
$r \rightarrow r$ (1 0 0)	
$(I)_{ei}^{ei} = ([I_{(ei)}] \cdots) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & \vdots \end{pmatrix}$	
4. If $A \in M_{mxn} \& A^{-1} s. t. A * A^{-1} = I$	
then $A^{-1}A = I$	
5. A(B+C) = AB + AC	
(A+B)C = AC + BC	
Proof 1: Work in M (exercise)	
Proof 2: Work in l.t. (exercise)	

The Good and the Bad of Matrix Multiplication:

Goals:

- 1. Given $T: V \to W$ compute rank T
- 2. Given an nxn matrix compute A^{-1} (if $A^{-1}\exists$)
- 3. Solve large systems of linear equations systematically.

Proposition:

$$V \stackrel{Q}{\to} V \stackrel{T}{\to} W \stackrel{P}{\to} W \stackrel{V}{\to} W$$

Given this diagram, if P & Q are invertible, then rank(T) = rank(PTQ)

Proof:

$$P: R(T) \rightarrow R(T)$$
 is an isomorphism.

- 1. $P: W \to W$ if $w \in R(T)$ then $P: W \in R(T)$
- 2. P is onto.
- 3. P is one-to-one.

Proof of 1:

If
$$w \in R(T)$$
 then find $v \in V$ s.t. $Tv = w$
Let $v = Q^{-1}v \in V^{`}$
 $T^{`}v^{`} = (PTQ)(v^{`}) = PTQQ^{`}v$
 $= PTv = PW$
So $PW \in R(T^{`})$

Proof of 2:

If
$$w \in R(T)$$
 find $v \in V$ s.t. $Tv = w$
but then w is $Tv = PTQv = P(T(Qv)) = P(T(v)) = P(w)$

Proof of 3:

Automatic! (Restricting a one to one function is always one-to-one!)

Definition:

If $A \in M_{mxn}$ let $T_A: F^n \to F^m$ be the usual, $T_A v = Av$ and set:

$$rank(A) = rank(T)$$

Comment 1: Given $\stackrel{V}{\beta} \stackrel{T}{\rightarrow} \stackrel{W}{\gamma}$ $rank[T_A]^{\gamma}_{\beta} = rank(T)$ **Proof**: Let $A = [T_A]^{\gamma}_{\beta}$, we have: $V \qquad \vec{T} \qquad W$

 $\begin{array}{ccc} V & T & W \\ \downarrow Q & (system is commutative) & \downarrow P \\ F^n & \xrightarrow{T_A} & F^m \end{array} \rightarrow T_A = PTQ^{-1}$

 $rank[T_A]^{\gamma}_{\beta} = rank(A) = rank(T_A) = rank(PTQ^{-1}) = rank(T) \blacksquare$

Comment 2: If $A \in M_{mxn}(F)$, $P \in M_{mxm}$, $Q \in M_{nxn} \& P, Q$ are invertible, then:

$$rank(A) = rank(PAQ)$$

Proof:

(Exercise)