MAT240: Abstract Linear Algebra Lecture:

Theorem: If $det' = M_{nxn} \rightarrow F$ satisfies 0-3, then det' = det

Theorem: If $A = E_1 \dots E_n$ is a product of elementary matrices and B is a matrix in RREF, then

$$\det(A) = \det(E_1) * \det(E_2) \dots \det(E_n) B$$

 $\operatorname{Proof:} \det(A) = \det(E_1(E_2 \dots E_n B)) = \det(E) * \det(A^{\circ}) * \det(B)$

$$= \det(E_1) * \det(E_2 \dots E_n B) = \det(E_1) * \det(E_2) * \dots * \det(E_n) * \det(E_n)$$

Theorem: A is invertible $\leftrightarrow \det(A) \neq 0 \rightarrow \det(A)$ is invertible.

Proof: Write $A = E_1 \dots E_n B$ where B is in RREF

A is invertible
$$\stackrel{by \ following \ lemma}{\longleftrightarrow} E_1 \dots E_n \& B \text{ are invertible.}$$

 $\leftrightarrow \det(E_1) \neq \text{, and } \det(E_2) \neq 0 \text{ and } \dots \text{ and } \det(B) \neq 0$
 $\leftrightarrow |E_1||E_2| \dots |B| \leftrightarrow \det(A) = \det(E_1 \dots E_n B) \neq 0$

Lemma: If A, B are nxn square matrices $(A, B \in M_{nxn})$ then AB is invertible iff both AB are invertible. Likewise $E_1 \dots E_n$ is invertible iff each E_i is invertible.

Comment: If B is RREF:

B has a row of 0's	B has no row of 0's
• det(B) = 0	• det(B) = 1
B is not invertible	B is invertible

Proof of Lemma: Suppose A and B are invertible:

$$AB(B^{-1}A^{-1}) = AIA^{-1} = AA^{-1} = I$$

 $(B^{-1}A^{-1})AB = \dots = I$

 $\rightarrow AB$ is invertible

Assume (AB) is invertible, $\exists C s. t. (AB)C = C(AB) = I$

Claim: BC is an inverse of A (so A is invertible)

Proof: ABC = (AB)C = I and by a theorem that we've proven, if a square matrix has a right inverse, then its right inverse is also a left inverse.

Theorem: det(AB) = det(A) det(B)

Proof: Either A or B are is not invertible

e.g if I is not invertible, det(A) = 0 and also, AB is not invertible so det(AB) = 0. Otherwise, both A&B are invertible, so write $A = E_1 \dots E_n I = E_1 \dots E_n$ and $B = E`_1 \dots E`_m$ so $det(AB) = det(E_1 \dots E_n * E`_1 \dots E`_m)$ $= det(E_1) det(E_2) \dots det(E_n) det(E`_1) \dots det(E`_m)$ $= det(E_1 \dots E_n) det E`_1 \dots E`_m)$ = det(A) det B

Corollary:

A is invertible iff A^T is $(A^T)^{-1} = (A^{-1})^T$

Proof: Exercise

Theorem: $det(A^T) = det(A)$

Proof: If A isn't invertible 0 = 0 Otherwise, write A = $E_1 \dots E_n$ $det(A^T) = det((E_1 \dots E_n)^T) = det(E_n^T E_{n-1}^T \dots E_1^T)$ $= det(E_n^T) det(E_{n-1}^T) \dots det(E_1^T) = det(E_1) det(E_2) \dots det(E_n) = det \mathbb{Q}A$

: Moral of det(A^T) = det $\mathbb{Z}A$) \rightarrow anything true for rows is also true for columns.