MAT240: Abstract Linear Algebra Lecture:

Theorem: If det $^{`}=M_{n x n} \rightarrow F$ satisfies 0-3, then $\operatorname{det}^{`}=\operatorname{det}$
Theorem: If $A=E_{1} \ldots E_{n}$ is a product of elementary matrices and B is a matrix in RREF, then

$$
\operatorname{det}(A)=\operatorname{det}\left(E_{1}\right) * \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{n}\right) B
$$

Proof: $\operatorname{det}(A)=\operatorname{det}\left(E_{1}\left(E_{2} \ldots E_{n} B\right)\right)=\operatorname{det}(E) * \operatorname{det}\left(A^{`}\right) * \operatorname{det}(B)$

$$
=\operatorname{det}\left(E_{1}\right) * \operatorname{det}\left(E_{2} \ldots E_{n} B\right)=\operatorname{det}\left(E_{1}\right) * \operatorname{det}\left(E_{2}\right) * \ldots * \operatorname{det}\left(E_{n}\right) * \operatorname{det}(B)
$$

Theorem: A is invertible $\leftrightarrow \operatorname{det}(A) \neq 0 \rightarrow \operatorname{det}(A)$ is invertible.
Proof: Write $A=E_{1} \ldots E_{n} B$ where B is in RREF

$$
\begin{aligned}
& \mathrm{A} \text { is invertible } \stackrel{\text { by following lemma }}{\Longleftrightarrow} E_{1} \ldots E_{n} \& B \text { are invertible. } \\
& \leftrightarrow \operatorname{det}\left(E_{1}\right) \neq \text {, and } \operatorname{det}\left(E_{2}\right) \neq 0 \text { and } \ldots \text { and } \operatorname{det}(B) \neq 0 \\
& \leftrightarrow\left|E_{1}\right|\left|E_{2}\right| \ldots|B| \leftrightarrow \operatorname{det}(A)=\operatorname{det}\left(E_{1} \ldots E_{n} B\right) \neq 0
\end{aligned}
$$

Lemma: If A, B are nxn square matrices $\left(A, B \in M_{n x n}\right)$ then AB is invertible iff both AB are invertible. Likewise $E_{1} \ldots E_{n}$ is invertible iff each E_{i} is invertible.

Comment: If B is RREF:

B has a row of 0's	B has no row of 0's
$\bullet \operatorname{det}(B)=0$	$\bullet \operatorname{det}(B)=1$
$\bullet \quad B$ is not invertible	$\bullet B$ is invertible

Proof of Lemma: Suppose A and B are invertible:

$$
\begin{aligned}
& A B\left(B^{-1} A^{-1}\right)=A I A^{-1}=A A^{-1}=I \\
& \left(B^{-1} A^{-1}\right) A B=\cdots=I
\end{aligned}
$$

$\rightarrow A B$ is invertible
Assume (AB) is invertible, $\exists C$ s.t. $(A B) C=C(A B)=I$

Claim: $B C$ is an inverse of A (so A is invertible)
Proof: $A B C=(A B) C=I$ and by a theorem that we've proven, if a square matrix has a right inverse, then its right inverse is also a left inverse.

Theorem: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
Proof: Either A or B are is not invertible
e.g if I is not invertible, $\operatorname{det}(A)=0$ and also, AB is not invertible so $\operatorname{det}(A B)=0$.

Otherwise, both A\&B are invertible, so write $A=E_{1} \ldots E_{n} I=E_{1} \ldots E_{n}$

$$
\begin{aligned}
& \text { and } B=E_{1}^{\prime} \ldots E_{m}^{\prime} \operatorname{so} \operatorname{det}(A B)=\operatorname{det}\left(E_{1} \ldots E_{n} * E_{1}^{\prime} \ldots E_{m}^{\prime}\right) \\
& =\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{n}\right) \operatorname{det}\left(E_{1}^{\prime}\right) \ldots \operatorname{det}\left(E_{m}^{\prime}\right) \\
& =\operatorname{det}\left(E_{1} \ldots E_{n}\right) \operatorname{det}\left(E_{1}^{\prime} \ldots E_{m}^{\prime}\right) \\
& =\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

Corollary:
A is invertible iff A^{T} is $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
Proof: Exercise
Theorem: $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
Proof: If A isn't invertible $0=0$

Otherwise, write A = $E_{1} \ldots E_{n}$

$$
\begin{aligned}
& \operatorname{det}\left(A^{T}\right)=\operatorname{det}\left(\left(E_{1} \ldots E_{n}\right)^{T}\right)=\operatorname{det}\left(E_{n}{ }^{T} E_{n-1}{ }^{T} \ldots E_{1}{ }^{T}\right) \\
& =\operatorname{det}\left(E_{n}{ }^{T}\right) \operatorname{det}\left(E_{n-1}{ }^{T}\right) \ldots \operatorname{det}\left(E_{1}{ }^{T}\right)=\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{n}\right)=\operatorname{det}(A)
\end{aligned}
$$

\therefore Moral of $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) \rightarrow$ anything true for rows is also true for columns.

