Dror Bar-Natan: Classes: 2007-08: Math 401 Polynomials, Equations, Fields:

Galois Theory Quick Reference

Goal. Some polynomials cannot be "solved" using $+, -, \times, \div$ and $\sqrt[n]{-}$. Galois Theory. Roughly, there is a correspondence

{field extensions}	The Fundamental \longleftrightarrow Theorem	{groups}
{extensions by roots}	\longrightarrow	$\{$ "solvable groups" $\}$
splitting field of $3x^5 - 15x + 5$		the non-solvable
	\longrightarrow	permutation group
		S_5

To do.

- 1. More on splitting fields.
- 2. Quick reminders on group theory.
- 3. Precise statement of the fundamental theorem.
- 4. Examples for the fundamental theorem.
- 5. On solvable groups: definition, basic properties, S_5 is not solvable.
- 6. "Extensions by radicals" correspond to solvable groups.
- 7. The splitting field of $3x^5 15x + 5$ corresponds to S_5 .
- 8. Proof of the fundamental theorem.

Dror Bar-Natan: Classes: 2007-08: Math 401 Polynomials, Equations, Fields:

Galois Theory Quick Reference

Goal. Some polynomials cannot be "solved" using $+, -, \times, \div$ and n/.

Galois Theory. Roughly, there is a correspondence

{field extensions}	The Fundamental \longleftrightarrow Theorem	{groups}
{extensions by roots}	\longrightarrow	$\{$ "solvable groups" $\}$
splitting field of $3x^5 - 15x + 5$	\longrightarrow	the non-solvable permutation group
		S_5

To do.

- 1. More on splitting fields.
- 2. Quick reminders on group theory.
- 3. Precise statement of the fundamental theorem.
- 4. Examples for the fundamental theorem.
- 5. On solvable groups: definition, basic properties, S_5 is not solvable.
- 6. "Extensions by radicals" correspond to solvable groups.
- 7. The splitting field of $3x^5 15x + 5$ corresponds to S_5 .
- 8. Proof of the fundamental theorem.

Dror Bar-Natan: Classes: 2007-08: Math 401 Polynomials, Equations, Fields:

Galois Theory Quick Reference

Goal. Some polynomials cannot be "solved" using $+, -, \times, \div$ and $\sqrt[n]{}$.

Galois Theory. Roughly, there is a correspondence

{field extensions}	The Fundamental \longleftrightarrow Theorem	$\{\text{groups}\}$
{extensions by roots}	\longrightarrow	$\{$ "solvable groups" $\}$
splitting field of $3x^5 - 15x + 5$		the non-solvable
	\longrightarrow	permutation group
		S_5

To do.

- 1. More on splitting fields.
- 2. Quick reminders on group theory.
- 3. Precise statement of the fundamental theorem.
- 4. Examples for the fundamental theorem.
- 5. On solvable groups: definition, basic properties, S_5 is not solvable.
- 6. "Extensions by radicals" correspond to solvable groups.
- 7. The splitting field of $3x^5 15x + 5$ corresponds to S_5 .
- 8. Proof of the fundamental theorem.

Dror Bar-Natan: Classes: 2007-08: Math 401 Polynomials, Equations, Fields:

Galois Theory Quick Reference

Goal. Some polynomials cannot be "solved" using $+, -, \times, \div$ and n/.

Galois Theory. Roughly, there is a correspondence

{field extensions}	The Fundamental \longleftrightarrow Theorem	{groups}
{extensions by roots}	\longrightarrow	{"solvable groups"}
splitting field of $3x^5 - 15x + 5$	\longrightarrow	the non-solvable permutation group S_5

To do.

- 1. More on splitting fields.
- 2. Quick reminders on group theory.
- 3. Precise statement of the fundamental theorem.
- 4. Examples for the fundamental theorem.
- 5. On solvable groups: definition, basic properties, S_5 is not solvable.
- 6. "Extensions by radicals" correspond to solvable groups.
- 7. The splitting field of $3x^5 15x + 5$ corresponds to S_5 .
- 8. Proof of the fundamental theorem.

The Fundamental Theorem of Galois Theory. Let F be a field of characteristic 0 and let E be a splitting field over F. Then there is a bijective correspondence between the set $\{K : E/K/F\}$ of intermediate field extensions K lying between F and E and the set $\{H : H < \operatorname{Gal}(E/F)\}$ of subgroups H of the Galois group $\operatorname{Gal}(E/F)$ of the original extension E/F:

$$\{K: E/K/F\} \quad \leftrightarrow \quad \{H: H < \operatorname{Gal}(E/F)\}.$$

The bijection is given by mapping every intermediate extension K to the subgroup $\operatorname{Gal}(E/K)$ of elements in $\operatorname{Gal}(E/F)$ that preserve K,

$$\Phi: K \mapsto \operatorname{Gal}(E/K) := \{g: E \to E: g|_K = I\},\$$

and reversely, by mapping every subgroup H of $\operatorname{Gal}(E/F)$ to its fixed field E_H :

$$\Psi: H \mapsto E_H := \{ x \in E : \forall h \in H, hx = x \}.$$

This correspondence has the following further properties:

- It is inclusion-reversing: if $H_1 \subset H_2$ then $E_{H_1} \supset E_{H_2}$ and if $K_1 \subset K_2$ then $\operatorname{Gal}(E/K_1) > \operatorname{Gal}(E/K_2)$.
- It is degree/index respecting: $[E:K] = |\operatorname{Gal}(E/K)|$ and $[K:F] = [\operatorname{Gal}(E/F) : \operatorname{Gal}(E/K)].$
- Splitting fields correspond to normal subgroups: If K in E/K/F is the splitting field of a polynomial in F[x] then $\operatorname{Gal}(E/K)$ is normal in $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(K/F) \cong$ $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$.

The Fundamental Theorem of Galois Theory. Let F be a field of characteristic 0 and let E be a splitting field over F. Then there is a bijective correspondence between the set $\{K : E/K/F\}$ of intermediate field extensions K lying between F and E and the set $\{H : H < \operatorname{Gal}(E/F)\}$ of subgroups H of the Galois group $\operatorname{Gal}(E/F)$ of the original extension E/F:

$$\{K: E/K/F\} \quad \leftrightarrow \quad \{H: H < \operatorname{Gal}(E/F)\}.$$

The bijection is given by mapping every intermediate extension K to the subgroup $\operatorname{Gal}(E/K)$ of elements in $\operatorname{Gal}(E/F)$ that preserve K,

$$\Phi: K \mapsto \operatorname{Gal}(E/K) := \{g: E \to E: g|_K = I\},\$$

and reversely, by mapping every subgroup H of $\operatorname{Gal}(E/F)$ to its fixed field E_H :

$$\Psi: H \mapsto E_H := \{ x \in E : \forall h \in H, hx = x \}.$$

This correspondence has the following further properties:

- It is inclusion-reversing: if $H_1 \subset H_2$ then $E_{H_1} \supset E_{H_2}$ and if $K_1 \subset K_2$ then $\operatorname{Gal}(E/K_1) > \operatorname{Gal}(E/K_2)$.
- It is degree/index respecting: $[E:K] = |\operatorname{Gal}(E/K)|$ and $[K:F] = [\operatorname{Gal}(E/F) : \operatorname{Gal}(E/K)].$
- Splitting fields correspond to normal subgroups: If K in E/K/F is the splitting field of a polynomial in F[x] then $\operatorname{Gal}(E/K)$ is normal in $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(K/F) \cong$ $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$.

The Fundamental Theorem of Galois Theory. Let F be a field of characteristic 0 and let E be a splitting field over F. Then there is a bijective correspondence between the set $\{K: E/K/F\}$ of intermediate field extensions K lying between F and E and the set $\{H: H < \operatorname{Gal}(E/F)\}$ of subgroups H of the Galois group $\operatorname{Gal}(E/F)$ of the original extension E/F:

$$\{K: E/K/F\} \quad \leftrightarrow \quad \{H: H < \operatorname{Gal}(E/F)\}.$$

The bijection is given by mapping every intermediate extension K to the subgroup $\operatorname{Gal}(E/K)$ of elements in $\operatorname{Gal}(E/F)$ that preserve K,

$$\Phi: K \mapsto \operatorname{Gal}(E/K) := \{g: E \to E : g|_K = I\},\$$

and reversely, by mapping every subgroup H of $\operatorname{Gal}(E/F)$ to its fixed field E_H :

$$\Psi: H \mapsto E_H := \{ x \in E : \forall h \in H, hx = x \}.$$

This correspondence has the following further properties:

- It is inclusion-reversing: if $H_1 \subset H_2$ then $E_{H_1} \supset E_{H_2}$ and if $K_1 \subset K_2$ then $\operatorname{Gal}(E/K_1) > \operatorname{Gal}(E/K_2)$.
- It is degree/index respecting: $[E:K] = |\operatorname{Gal}(E/K)|$ and $[K:F] = [\operatorname{Gal}(E/F) : \operatorname{Gal}(E/K)].$
- Splitting fields correspond to normal subgroups: If K in E/K/F is the splitting field of a polynomial in F[x] then $\operatorname{Gal}(E/K)$ is normal in $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(K/F) \cong$ $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$.

The Fundamental Theorem of Galois Theory. Let F be a field of characteristic 0 and let E be a splitting field over F. Then there is a bijective correspondence between the set $\{K: E/K/F\}$ of intermediate field extensions K lying between F and E and the set $\{H: H < \operatorname{Gal}(E/F)\}$ of subgroups H of the Galois group $\operatorname{Gal}(E/F)$ of the original extension E/F:

$$\{K: E/K/F\} \quad \leftrightarrow \quad \{H: H < \operatorname{Gal}(E/F)\}.$$

The bijection is given by mapping every intermediate extension K to the subgroup $\operatorname{Gal}(E/K)$ of elements in $\operatorname{Gal}(E/F)$ that preserve K,

 $\Phi: K \mapsto \operatorname{Gal}(E/K) := \{g: E \to E: g|_K = I\},\$

and reversely, by mapping every subgroup H of $\operatorname{Gal}(E/F)$ to its fixed field E_H :

$$\Psi: H \mapsto E_H := \{ x \in E : \forall h \in H, hx = x \}.$$

This correspondence has the following further properties:

- It is inclusion-reversing: if $H_1 \subset H_2$ then $E_{H_1} \supset E_{H_2}$ and if $K_1 \subset K_2$ then $\operatorname{Gal}(E/K_1) > \operatorname{Gal}(E/K_2)$.
- It is degree/index respecting: $[E:K] = |\operatorname{Gal}(E/K)|$ and $[K:F] = [\operatorname{Gal}(E/F) : \operatorname{Gal}(E/K)].$
- Splitting fields correspond to normal subgroups: If K in E/K/F is the splitting field of a polynomial in F[x] then $\operatorname{Gal}(E/K)$ is normal in $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(K/F) \cong$ $\operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$.