Apr 3 Preliminaries: 1. Poincare's lemma: on 10" closed => exact. If dw=o then I \ \ st. w= d\. 2. Integration by parts: if supp w. n is compact Spr whan =- (-1) deg w Spr dwh 1. => 1-1) degw [d(wny) = (-1) degw [dwny + [wndy. In (what) = (-1) degw Ind(why) - (-1) degw Indwhy = (+1) degw Indwhy - (+1) degw Indwhy if Expression= - (1) degree Sm(dw) n.m. dim(/((m)) = () = (nk) = dim / nk (18") In (3 * \$ 0 = 023 \$ 0 1 1 + (02) = 0 1 On M'toyz X(dt) = dx n dy n dz S=1. dt nS(dx n dy n dz) = dt dxdy dz * (dxdydz) = sdt = -dt dx dy dz ~ (sdt) = dt dxdydz S=-1. 3. Hodge #: 1k (m") -> 2nk (m") st. If w. n & Nk (m") < w. n > dx = w n (*N) Ifidxi Ifigi Ingidxi. W= dx1 N= dx3 LHS= 813 dxn DHS= 813 dxn Least Action principle: Every low in classical physics comes from minimizing some "action functional" Maxwell's eqn. (=> minimizing S(A) = 1 = 11dAll2 + J^A EDM Example. (([a,b]) > q. q(a) = q. q(b) = q. Among all such fins, find the extremum of $S(q) = \int_a^b (-\frac{1}{2}m \dot{q}^2 - V(q(t))) dt$. kinetic energy potential energy a t b Extremes of $f: \mathbb{N}^n \to \mathbb{N}$ x is an extreme \Rightarrow If you consider f(x+sx) where ax trajectory of a particle. is tiny then of = f(x+Dx)-f(x) also of= fix ax + = f" (x) ax + ... X is an extremum of fox => E=0 is an extremum of f(x+Eax) => 2f(x+E ax) =0 at E=0. 9 is an extreme => If 89: [a,b] > 17 s.t. 89(a)=89(b)=0 then 35(9+889)=0 at 8=0. 4

The Bare Necessities

1. http://drorbn.net/1617-257 2. This will be a tough class. 3. The essence: $\int_M d\omega = \int_{\partial M} \omega$, "Stokes' Theorem".

Like $\int_a^b f' = f|_a^b$, yet: What's M? What's ∂M ? What's ω ? What's $d\omega$? What's \int ? Why true? Why care?

Preview: A Bit on Maxwell's Equations

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^n , every closed form is exact. That is, if $d\omega = 0$, then there exists η with $d\eta = \omega$.
- Integration by parts: $\int \omega \wedge d\eta = -(-1)^{\deg \omega} \int (d\omega) \wedge \eta$ on domains that have no boundary.
- The Hodge star operator \star which satisfies $\omega \wedge \star \eta = \langle \omega, \eta \rangle dx_1 \cdots dx_n$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q\mapsto \int_a^b\left(\frac{1}{2}m\dot{q}^2(t)-V(q(t))\right)dt$ occur when $m\ddot{q}=-V'(q(t))$. That is, when F=ma.

Maxwell's equations

I.
$$\nabla \cdot E = \frac{\beta}{\epsilon_0}$$
 (Flux of E through a closed surface) = (Charge inside)/ ϵ_0

II. $\nabla \cdot E = -\frac{\partial B}{\partial t}$ (Line integral of E around a loop) = $-\frac{d}{dt}$ (Flux of B through the loop)

III. $\nabla \cdot B = 0$ (Flux of B through a closed surface) = 0

IV. $e^2 \nabla \times B = \frac{J}{\epsilon_0} + \frac{\partial E}{\partial t}$ e^2 (Integral of B around a loop) = (Current through the loop)/ ϵ_0 + $\frac{\partial}{\partial t}$ (Flux of E through the loop)

[Conservation of charge
$$\nabla \cdot J = -\frac{\partial p}{\partial t}$$
 (Flux of current through a closed surface) = $-\frac{\partial}{\partial t}$ (Charge inside)

Force law
$$F = q(E + v \times B)$$
Law of motion
$$\frac{d}{dt}(p) = F, \quad \text{where} \quad p = \frac{mv}{\sqrt{1 - v^2/c^2}}$$
 (Newton's law, with Einstein's modification)

Gravitation
$$F = -G \frac{m_1 m_2}{r^2} \epsilon_r$$

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The Vector Field is a compactly supported 1-form A on \mathbb{R}^4 which extremizes the action

$$S_{J}(A) := \int_{\mathbb{R}^{4}} \frac{1}{2} \|dA\|^{2} dt dx dy dz + J \wedge A$$

where the 3-form J is the charge-current.

The Euler-Lagrange Equations in this case are $d \star dA = J$, meaning that there's no hope for a solution unless dJ = 0, and that we might as well (think Poincaré's Lemma!) change variables to F := dA. We thus get

$$\boxed{dJ = 0 \qquad dF = 0 \qquad d \star F = J}$$

These are the Maxwell equations! Indeed, writing $F = (E_x dxdt + E_y dydt + E_z dzdt) + (B_x dydz + B_y dzdx + B_z dxdy)$ and $J = \rho dxdydz - j_x dydzdt - j_y dzdxdt - j_z dxdydt$, we find:

$$dJ=0 \Longrightarrow \qquad \frac{\partial \rho}{\partial t} + \operatorname{div} j = 0 \qquad \text{"conservation of charge"}$$

$$dF=0 \Longrightarrow \qquad \operatorname{div} B=0 \qquad \text{"no magnetic monopoles"}$$

$$\operatorname{curl} E=-\frac{\partial B}{\partial t} \qquad \text{that's how generators work!}$$

$$d*F=J \Longrightarrow \qquad \operatorname{div} E=-\rho \qquad \text{"electrostatics"}$$

$$\operatorname{curl} B=-\frac{\partial E}{\partial t}+j \qquad \text{that's how electromagnets work!}$$

Exercise. Use the Lorentz metric to fix the sign errors.

Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers. Exercise. With $ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$ use $S = mc \int_{e_1}^{e_2} (ds + eA)$ to derive Feynman's "law of motion" and "force law".

