READING THE LATTICE DIAGRAM AND ITS MEANING

Group H_1 Group H_2

(Line joining H_1 and H_2 signifies *index of* H_1 in H_2)

Field K₁ _____ Field K₂

(Line joining K_1 and K_2 signifies degree of K_2 over K_1)

DEFINITIONS

Let:

- 1. F = Field
- 2. E = extension field of F
- 3. $\phi: E \to E$

If φ is an isomorphism then:

- 1. φ = Automorphism of E
- **2.** Gal(E/F) = set of all automorphism of E that takes every element of F to itself
- 3. E_H = fixed field of H, where H is a subgroup of Gal(E/F)= $\{x \in E \mid \phi(x) = x, \forall \phi \in H\}$
- Set of automorphism of E forms a group under composition!
- Gal(E/F) group *is a* subgroup *of the* "automorphism group of E"
- E_H of H is a subfield of E

EXAMPLE 1

Suppose: F = Q, $E = \text{extension field of } F = Q(\sqrt{2})$

Then:

- Any automorphism of a field containing Q must act as an identity on Q
- Any automorphism ϕ of E is completely determined by $\phi(\sqrt{2})$

$$\therefore \qquad 2 \qquad = \phi(2) = \phi(\sqrt{2}\sqrt{2}) = (\phi(\sqrt{2}))^2$$

- $\Rightarrow \qquad \phi(\sqrt{2}) = \pm \sqrt{2}$
- \Rightarrow Gal(Q($\sqrt{2}$)/Q) has two elements:
 - 1. identity mapping
 - 2. mapping that takes $(a + b\sqrt{2})$ to $(a b\sqrt{2})$

EXAMPLE 2

Suppose: F = Q, $E = \text{extension field of } F = Q(\sqrt[3]{2})$

Then: Any automorphism ϕ of E is completely determined by $\phi(\sqrt[3]{2})$

Since
$$2 = \phi(2) = \phi(\sqrt[3]{2}\sqrt[3]{2}) = (\phi(\sqrt[3]{2}))^3$$

and
$$Q(\sqrt[3]{2}) \subseteq R$$

- \therefore $\sqrt[3]{2}$ is the only *real cube root* of 2
- \Rightarrow $\phi(\sqrt[3]{2}) = \sqrt[3]{2}$ (identity automorphism)
- \Rightarrow Gal(E/F) has only one element
- \Rightarrow Fixed field of Gal(E/F) = Q($\sqrt[3]{2}$)

EXAMPLE 3

Suppose: F = Q(i), E =extension field of $F = Q(\sqrt[4]{2}, i)$

Then: Any automorphism ϕ fixing Q(i) is completely determined by $\phi(\sqrt[4]{2})$

Since $2 = \phi(2) = \phi((\sqrt[4]{2})^4) = (\phi(\sqrt[4]{2}))^4$

 $\Rightarrow \qquad \phi(\sqrt[4]{2}) = \sqrt[4]{2}$

 \Rightarrow At most 4 possible automorphisms of $Q(\sqrt[4]{2}, i)$ fixing Q(i)

Let: α be an *automormphism* such that:

 $\alpha(i) = i$ and

 $\alpha(\sqrt[4]{2}) = i\sqrt[4]{2}$

Then:

- 1. $\alpha \in Gal(E/F)$ and
- 2. order of $\alpha = 4$
- \Rightarrow Gal(E/F) is a cyclic group of order 4 Fixed field of {e, α^2 } = Q($\sqrt{2}$, i)

Lattice Diagram of Gal(E/F):

lattice of subgroups of Gal(E/F)

lattice of subfield of E containing F

EXAMPLE 4

Suppose $F = Q, E = Q(\sqrt{3}, \sqrt{5})$

Since $Q(\sqrt{3}, \sqrt{5}) = \{a + b\sqrt{3} + c\sqrt{5} + d\sqrt{3}\sqrt{5}: a, b, c, d \in Q\}$

 \therefore Any automorphism ϕ is completely determined by: $\phi(\sqrt{3})$ and $\phi(\sqrt{5})$

e	α	β	αβ
$\sqrt{3} \rightarrow \sqrt{3}$	$\sqrt{3} \rightarrow -\sqrt{3}$	$\sqrt{3} \rightarrow \sqrt{3}$	$\sqrt{3} \rightarrow -\sqrt{3}$
$\sqrt{5} \rightarrow \sqrt{5}$	$\sqrt{5} \rightarrow \sqrt{5}$	$\sqrt{5} \rightarrow -\sqrt{5}$	$\sqrt{5} \rightarrow -\sqrt{5}$

- $Gal(E/F) \approx Z_2 \oplus Z_2$
- Fixed Field of: (**)
 - 1. $\{e, \alpha\} = Q(\sqrt{5})$
 - 2. $\{e, \beta\} = Q(\sqrt{3})$
 - $3. \quad \{e, \alpha\beta\} = Q(\sqrt{3}\sqrt{5})$

*Lattice Diagram of Ex 4: (use result of ** on previous page)*

Lattice subgroups of Gal(E/F)

Lattice Subfields of E containing F

EXAMPLE 5: SEE CLASS NOTES

THEOREM 32.1 Fundamental Theorem of Galois Theory (See Class Notes)

EXAMPLE 6

Suppose
$$w = cos(2\pi/7) + isin(2\pi/7) \implies w^7 = 1$$
 (*)

Let F = Q(w)

Then $F = \text{splitting field of } x^7 - 1 \text{ over } Q$

:. We can apply Fundamental Theorem of Galois Theory

By Calculation $\frac{\text{If:}}{\text{Then:}} \phi \text{ is an } automorphism, s.t. } \phi(w) = w^3$ $|\phi| = 6$ (**)

• [F:Q] =
$$|\operatorname{Gal}(F/Q)|$$
 By Thm 32.1
 ≥ 6 By (**)

•
$$(x^7 - 1)$$
 = $(x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$
(*) \Rightarrow w is a zero of $x^7 - 1$

So:
$$|\operatorname{Gal}(F/Q)| = [F:Q]$$
 By Thm 32.1 ≤ 6

 \Rightarrow Gal(F/Q) = Cyclic Group of Order 6

 \Rightarrow Lattice Subgroup of Gal(F/Q) is trivial to compute

Then Q(w) contains 2 proper extensions of Q:

1. Extension of degree 3 with fixed field = $\langle \phi^3 \rangle$

2. Extension of degree 2 with fixed field = $\langle \phi^2 \rangle$

Fixed Field of $\langle \phi^3 \rangle$ = Member in Q(w) that is not in Q that is fixed by ϕ^3

i.e.
$$(w + w^{-1})$$
 is fixed by ϕ^3 and $Q \subset Q(w + w^{-1}) \subseteq Q(w)_{\langle \phi 3 \rangle}$

And Since:
$$[Q(w)_{\langle \phi 3 \rangle} : Q] = 3 \text{ and } [Q(w + w^{-1})_{\langle \phi 3 \rangle} : Q] \text{ divides } [Q(w)_{\langle \phi 3 \rangle} : Q]$$

$$\Rightarrow Q(w + w^{-1}) = Q(w)_{\langle \phi 3 \rangle}$$

Fixed Field of $\langle \phi^2 \rangle = (w^3 + w^5 + w^6)$ by similar argument as above

➤ See Text Book for Lattice Diagram of this example //end of page 553//