Reading the Lattice Diagram and its Meaning

Group H_{1} ——Group H_{2}
(Line joining H_{1} and H_{2} signifies index of H_{1} in H_{2})
Field K_{1}
Field K_{2}
(Line joining K_{1} and K_{2} signifies degree of K_{2} over K_{1})

DEFINITIONS

Let:

1. $\mathrm{F}=$ Field
2. $E=$ extension field of F
3. $\varphi: E \rightarrow E$

If φ is an isomorphism then:

1. $\varphi=$ Automorphism of E
2. $\mathrm{Gal}(\mathrm{E} / \mathrm{F})=$ set of all automorphism of E that takes every element of F to itself
3. $\mathrm{E}_{\mathrm{H}} \quad=$ fixed field of H, where H is a subgroup of $\mathrm{Gal}(\mathrm{E} / \mathrm{F})$

$$
=\{x \in E \mid \phi(x)=x, \forall \phi \in H\}
$$

- Set of automorphism of E forms a group under composition!
- $\mathrm{Gal}(\mathrm{E} / \mathrm{F})$ group is a subgroup of the "automorphism group of E "
- E_{H} of H is a subfield of E

EXAMPLE 1

Suppose: $\mathrm{F}=\mathrm{Q}, \mathrm{E}=$ extension field of $\mathrm{F}=\mathrm{Q}(\sqrt{ } 2)$

Then:

- Any automorphism of a field containing Q must act as an identity on Q
- Any automorphism ϕ of E is completely determined by $\phi(\sqrt{ } 2)$

$$
\begin{array}{lll}
\therefore & 2 & =\phi(2)=\phi(\sqrt{ } 2 \sqrt{ } 2)=(\phi(\sqrt{ } 2))^{2} \\
\Rightarrow & \phi(\sqrt{ } 2) & = \pm \sqrt{ } 2
\end{array}
$$

$$
\Rightarrow \quad \mathrm{Gal}(\mathrm{Q}(\sqrt{ } 2) / \mathrm{Q}) \text { has two elements: }
$$

1. identity mapping
2. mapping that takes $(a+b \sqrt{ } 2)$ to $(a-b \sqrt{ } 2)$

EXAMPLE 2

Suppose: $\quad \mathrm{F}=\mathrm{Q}, \mathrm{E}=$ extension field of $\mathrm{F}=\mathrm{Q}(\sqrt[3]{2})$

Then: \quad Any automorphism ϕ of E is completely determined by $\phi(\sqrt[3]{2})$

$$
\begin{array}{ll}
\text { Since } & 2 \quad=\phi(2)=\phi(\sqrt[3]{2} \sqrt[3]{2} \sqrt[3]{2})=(\phi(\sqrt[3]{2}))^{3} \\
\text { and } & \mathrm{Q}(\sqrt[3]{2}) \subset \mathrm{R} \\
\therefore & \sqrt[3]{2} \text { is the only real cube root } \text { of } 2 \\
\Rightarrow & \phi(\sqrt[3]{2})=\sqrt[3]{2} \quad \text { (identity automorphism }) \\
\Rightarrow & \mathrm{Gal}(\mathrm{E} / \mathrm{F}) \text { has only one element } \\
\Rightarrow & \text { Fixed field of } \mathrm{Gal}(\mathrm{E} / \mathrm{F})=\mathrm{Q}(\sqrt[3]{2})
\end{array}
$$

EXAMPLE 3
Suppose: $\quad \mathrm{F}=\mathrm{Q}(\mathrm{i}), \mathrm{E}=$ extension field of $\mathrm{F}=\mathrm{Q}(\sqrt[4]{2}, \mathrm{i})$

Then: \quad Any automorphism ϕ fixing $Q(i)$ is completely determined by $\phi(\sqrt[4]{2})$

$$
\begin{array}{ll}
\text { Since } & 2=\phi(2)=\phi\left((\sqrt[4]{2})^{4}\right)=(\phi(\sqrt[4]{2}))^{4} \\
\Rightarrow & \phi(\sqrt[4]{2})=\sqrt[4]{2} \\
\Rightarrow & \text { At most } 4 \text { possible automorphisms of } Q(\sqrt[4]{2} 2, \text { i) fixing } Q(i)
\end{array}
$$

Let: $\quad \alpha$ be an automormphism such that:
$\alpha(\mathrm{i}) \quad=\mathrm{i}$ and
$\alpha(\sqrt[4]{2})=i \sqrt[4]{2}$
Then:

1. $\alpha \in \operatorname{Gal}(\mathrm{E} / \mathrm{F})$ and
2. order of $\alpha=4$
$\Rightarrow \quad \mathrm{Gal}(\mathrm{E} / \mathrm{F})$ is a cyclic group of order 4
Fixed field of $\left\{\mathrm{e}, \alpha^{2}\right\}=\mathrm{Q}(\sqrt{ } 2, \mathrm{i})$

Lattice Diagram of Gal(E/F):

EXAMPLE 4

Suppose $F=Q, E=Q(\sqrt{ } 3, \sqrt{ } 5)$
Since $\quad Q(\sqrt{ } 3, \sqrt{ } 5)=\{a+b \sqrt{ } 3+c \sqrt{ } 5+d \sqrt{ } 3 \sqrt{ } 5: a, b, c, d \in Q\}$
$\therefore \quad$ Any automorphism ϕ is completely determined by: $\phi(\sqrt{ } 3)$ and $\phi(\sqrt{ } 5)$

e	α	β	$\alpha \beta$
$\sqrt{3} \rightarrow \sqrt{3}$	$\sqrt{3} \rightarrow-\sqrt{3}$	$\sqrt{3} \rightarrow \sqrt{3}$	$\sqrt{3} \rightarrow-\sqrt{3}$
$\sqrt{5} \rightarrow \sqrt{5}$	$\sqrt{5} \rightarrow \sqrt{5}$	$\sqrt{5} \rightarrow-\sqrt{5}$	$\sqrt{5} \rightarrow-\sqrt{5}$

- $\operatorname{Gal}(\mathrm{E} / \mathrm{F}) \approx \mathrm{Z}_{2} \oplus \mathrm{Z}_{2}$
- Fixed Field of: $(* *)$

1. $\{e, \alpha\}=Q(\sqrt{ } 5)$
2. $\{e, \beta\}=Q(\sqrt{ } 3)$
3. $\{\mathrm{e}, \alpha \beta\}=\mathrm{Q}(\sqrt{ } 3 \sqrt{ } 5)$

Lattice Diagram of Ex 4: (use result of ${ }^{* *}$ on previous page)

\{e\}
Lattice subgroups of $\operatorname{Gal}(E / F)$

Lattice Subfields of E containing F

EXAMPLE 5:

THEOREM 32.1

EXAMPLE 6

Suppose

$$
\mathrm{w}=\cos (2 \pi / 7)+i \sin (2 \pi / 7) \quad \Rightarrow \quad \mathrm{w}^{7}=1\left(^{*}\right)
$$

Let
Then
$\mathrm{F}=\mathrm{Q}(\mathrm{w})$
$\mathrm{F}=$ splitting field of $\mathrm{x}^{7}-1$ over Q
$\therefore \quad$ We can apply Fundamental Theorem of Galois Theory
By Calculation
If: $\quad \phi$ is an automorphism, s.t. $\phi(\mathrm{w})=\mathrm{w}^{3}$
Then: $|\phi|=6$

- $[\mathrm{F}: \mathrm{Q}] \quad=|\operatorname{Gal}(\mathrm{F} / \mathrm{Q})| \quad$ By Thm 32.1

$$
\geq 6 \quad \text { By }(* *)
$$

- $\left(\mathrm{x}^{7}-1\right)=(\mathrm{x}-1)\left(\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)$
$\left(^{*}\right) \quad \Rightarrow \mathrm{w}$ is a zero of $\mathrm{x}^{7}-1$
So: $\quad|\operatorname{Gal}(\mathrm{F} / \mathrm{Q})|=[\mathrm{F}: \mathrm{Q}] \quad$ By Thm 32.1

$$
\leq 6
$$

$\Rightarrow \operatorname{Gal}(\mathrm{F} / \mathrm{Q})=$ Cyclic Group of Order 6
\Rightarrow Lattice Subgroup of $\operatorname{Gal}(\mathrm{F} / \mathrm{Q})$ is trivial to compute
Then $\mathrm{Q}(\mathrm{w})$ contains 2 proper extensions of Q :

1. Extension of degree 3 with fixed field $=\left\langle\phi^{3}\right\rangle$
2. Extension of degree 2 with fixed field $=\left\langle\phi^{2}\right\rangle$
$>$ Fixed Field of $\left\langle\phi^{3}\right\rangle=$ Member in $\mathrm{Q}(\mathrm{w})$ that is not in Q that is fixed by ϕ^{3}
i.e.

$$
\left(\mathrm{w}+\mathrm{w}^{-1}\right) \text { is fixed by } \phi^{3} \text { and } \mathrm{Q} \subset \mathrm{Q}\left(\mathrm{w}+\mathrm{w}^{-1}\right) \subseteq \mathrm{Q}(\mathrm{w})_{\langle\phi 3\rangle}
$$

And Since: $\quad\left[\mathrm{Q}(\mathrm{w})_{\langle\phi 3\rangle}: \mathrm{Q}\right]=3$ and $\left[\mathrm{Q}\left(\mathrm{w}+\mathrm{w}^{-1}\right)_{\langle\phi 3\rangle}: \mathrm{Q}\right]$ divides $\left[\mathrm{Q}(\mathrm{w})_{\langle\phi 3\rangle}: \mathrm{Q}\right]$
$\Rightarrow \quad \mathrm{Q}\left(\mathrm{w}+\mathrm{w}^{-1}\right)=\mathrm{Q}(\mathrm{w})_{\langle\phi 3\rangle}$
$>$ Fixed Field of $\left\langle\phi^{2}\right\rangle=\left(\mathrm{w}^{3}+\mathrm{w}^{5}+\mathrm{w}^{6}\right)$ by similar argument as above
$>$ See Text Book for Lattice Diagram of this example //end of page 553//

