MAT 240 - Linear Algebra Lecture

If:

$$
G \subset V, \quad|G|=n, \quad \operatorname{span}(G)=V
$$

L is linearly independent in V
Then:

$$
|L| \leq|G| \quad \& \quad \exists R \subset G \text { s.t. }|R|=|L| \quad \& \quad V=\operatorname{span}((G \backslash R) \cup L)
$$

Proof of the above statement:

- By induction on $|L|$
- If $|L|=0$ then $0=|L| \leq|G|$ (as G is a natural number). With $R=\emptyset$ the conclusion holds/
- Assume lemma is known for any set L` with $|L|=m+1$

$$
L=\left\{\begin{array}{lll}
v_{1} & \cdots & v_{m+1}
\end{array}\right\} \quad G=\left\{\begin{array}{llll}
u_{1} & \cdots & u_{n}
\end{array}\right\}
$$

- Let $L^{`}=\left\{\begin{array}{lll}v_{1} & \cdots & v_{m}\end{array}\right\}$, then $L^{`}$ is linearly independent, $\left|L^{`}\right|=m$, so by the induction hypothesis lemma holds for $L^{`}$. This implies $\left|L^{`}\right|=m \leq|G|=n \quad \& \quad R^{`} \subset$ Gs.t. $\left|R^{`}\right|=\left|L^{`}\right| \quad \& \quad \operatorname{span}\left(\left(G / R^{`}\right) \cup L^{`}\right)=V$
- Finally w.l.o.g. $R^{`}=\left\{\begin{array}{lll}u_{1} & \cdots & u_{m}\end{array}\right\}$
- So now:
$\operatorname{span}\left(u_{m+1}, \ldots u_{n}, v_{1}, \ldots v_{m}\right)=V$. In particular, $v_{m+1} \in \operatorname{span}(\ldots)$, that is, $\exists a_{m+1}, a_{n}$ and $b_{1} \ldots b_{m} \in F$, s.t. $V_{m+1}=\sum_{i=m+1}^{n} a_{i} u_{i}+\sum_{j=1}^{m} b_{j} v_{j}$. It cannot be that $\forall i, a_{i}=0$, else we would have a linear dependency $V_{m+1}-\sum_{j=1}^{m} b_{j} v_{m}=0$ among the elements of L , contradicting the assumption that L is independent. So that at least one $a_{i}=0$ so $n \geq m+1$, and also w.l.o.g $a_{m+1} \neq 0$ and so, by the preliminary statement; u_{m+1} is a linear combination of $u_{m+2}, \ldots u_{n}$ and

$$
v_{1}, \ldots u_{m+1} .
$$

Now take $R=\left\{u_{m+1}\right\} \cup R^{`}=\left\{u_{1} \ldots u_{m+1}\right\}$
$\operatorname{Now} \operatorname{span}(G \backslash R) \cup L)=\operatorname{span}\left(\left\{u_{m+2}, \ldots u_{n}, v_{1}, \ldots v_{m+1}\right\}\right) \ni u_{m+1}$

$$
\begin{aligned}
& =\operatorname{span}\left(\left\{u_{m+1}, u_{m+2}, \ldots u_{n}, v_{1}, \ldots v_{m+1}\right\}\right) \supset \operatorname{span}\left\{u_{m+1}, u_{m+2}, \ldots u_{n}, v_{1}, \ldots v_{m}\right\} \\
& \left.\quad=\operatorname{span}\left(G \backslash R^{`}\right) \cup L^{`}\right)
\end{aligned}
$$

$$
=V
$$

$$
\left.\therefore \operatorname{span}\left(G \backslash R^{\prime}\right) \cup L^{`}\right)=V
$$

Corollaries:

1. If F has a finite basis β, then every other basis β_{2} is also finite and $\left|\beta_{1}\right|=\left|\beta_{2}\right|$ (so $\operatorname{dim}(\mathrm{V})$ makes sense.

Proof:
Take $G=\beta_{1}$ assume β_{2} is not finite $\&$ take L to be the first $\left|\beta_{1}\right|+1$
elements of β_{2}, then L is linearly independent but $|L| \leq|G|$ contradicting Replacement Theorem.
Now with $L=\beta_{2}$
$\rightarrow\left|\beta_{2}\right| \leq|G|=\left|\beta_{1}\right|$
\rightarrow (Go through other half of proof again: $\beta_{1} \leftrightarrow \beta_{2}$
2. Assume $\operatorname{dim}(V)=n$
a. If G generates $\mathrm{V},|G| \geq n$, if also $|G|=n$, then G is a basis.
b. If $L \subset V$ is linearly independent, then $|L| \leq n \&$ if also $|L| \leq n$ then L is a basis.

