Problem Set 19 — MAT257

April 5, 2017

Disclaimer—This page has been typeset by a student as a *convenient* consolidation of the homework problems. There inevitably will be mistakes; always defer to the official handout!

1 Munkres §37 (pp.308–309)

4. Let M be the 2-manifold in \mathbb{R}^3 consisting of all points **x** such that

$$4(x_1)^2 + (x_2)^2 + 4(x_3)^2 = 4$$
 and $x_2 \ge 0$.

Then ∂M is the circle consisting of all points such that

$$(x_1)^2 + (x_3)^2 = 1$$
 and $x_2 = 0$.

See Figure 37.5 (Munkres, p.309). The map

$$\alpha(u, v) = (u, 2\sqrt{1 - u^2 - v^2}, v),$$

for $u^2 + v^2 < 1$, is a coordinate patch on M that covers $M \setminus \partial M$. Orient M so that α belongs to the orientation, and give ∂M the induced orientation.

- (a) What normal vector corresponds to the orientation of M? What tangent vector corresponds to the induced orientation of ∂M ?
- (b) Let ω be the 1-form $\omega = x_2 dx_1 + 3x_1 dx_3$. Evaluate $\int_{\partial M} \omega$ directly.
- (c) Evaluate $\int_M d\omega$ directly, by expressing it as an integral over the unit disc in the (u, v) plane.

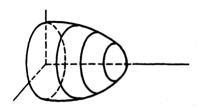


Figure 37.5

5. The 3-ball $B^3(r)$ is a 3-manifold in \mathbb{R}^3 ; orient it naturally and give $S^2(r)$ the induced orientation. Assume that ω is a 2-form defined in $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ such that

$$\int_{S^2(r)} \omega = a + \frac{b}{r}$$

for each r > 0.

- (a) Given 0 < c < d, let M be the 3-manifold in \mathbb{R}^3 consisting of all \mathbf{x} with $c \leq ||\mathbf{x}|| \leq d$, oriented naturally. Evaluate $\int_M d\omega$.
- (b) If $d\omega = 0$, what can you say about a and b?
- (c) If $\omega = d\eta$ for some η in $\mathbb{R}^3 \setminus \{0\}$, what can you say about a and b?
- 6. Let M be an oriented (k+l+1)-manifold without boundary in \mathbb{R}^n . Let ω be a k-form and let η be an l-form, both defined in an open set of \mathbb{R}^n about M. Show that

$$\int_{M} \omega \wedge d\eta = a \int_{M} d\omega \wedge \eta$$

for some a, and determine a. (Assume M is compact.)

2 Munkres §38 (pp.320-322)

- 2. Let G be a vector field defined in $A = \mathbb{R}^n \setminus \{\mathbf{0}\}$ with div G = 0 in A.
 - (a) Let M_1 and M_2 be compact n-manifolds in \mathbb{R}^n , such that the origin is contained in both $M_1 \setminus \partial M_1$ and $M_2 \setminus \partial M_2$. Let N_i be the unit outward normal vector field to ∂M_i , for i = 1, 2. Show that

$$\int_{\partial M_1} \langle G, N_1 \rangle \, dV = \int_{\partial M_2} \langle G, N_2 \rangle \, dV.$$

[Hint: Consider for the case where $M_2 = B^n(\epsilon)$ and is contained in $M_1 \setminus \partial M_1$. See Figure 38.2 (Munkres, p.321).]

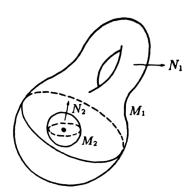


Figure 38.2

(b) Show that as M ranges over all compact n-manifolds in \mathbb{R}^n for which the origin is not in ∂M , the integral

$$\int_{\partial M} \langle G, N \rangle \, \mathrm{d}V,$$

where N is the unit normal to ∂M pointing outwards from M, has only two possible values.

3. Let G be a vector field in $B = \mathbb{R}^n \setminus \{\mathbf{p}, \mathbf{q}\}$ with $\operatorname{div} G = 0$ in B. As M ranges over all compact n-manifolds in \mathbb{R}^n for which $\{\mathbf{p}\}$ and $\{\mathbf{q}\}$ are not in ∂M , how many possible values does the integral

$$\int_{\partial M} \langle G, N \rangle \, \mathrm{d}V$$

have? (Here N is the unit normal to ∂M pointing outwards from M.)

5. Let S be the subset of \mathbb{R}^3 consisting of the union of:

- i the z-axis,
- ii the unit circle $x^2 + y^2 = 1$, z = 0,
- iii the points (0, y, 0) with $y \ge 1$.

Let A be the open set $\mathbb{R}^3 \setminus S$ of \mathbb{R}^3 . Let C_1, C_2, D_1, D_2, D_3 be the oriented 1-manifolds in A that are pictured in Figure 38.3 (Munkres, p.322). Suppose that F is a vector field in A, with curl $F = \mathbf{0}$ in A, and that

$$\int_{C_1} \langle F, T \rangle \, ds = 3 \quad \text{ and } \quad \int_{C_2} \langle F, T \rangle \, ds = 7.$$

What can you say about the integral

$$\int_{D_i} \langle F, T \rangle \, ds$$

for i = 1, 2, 3? Justify your answers.

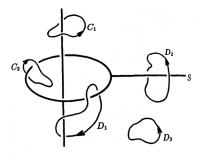


Figure 38.3

3 "Ponder..."

Challenge! Why does a planimeter work? See images at http://drorbn.net/AcademicPensieve/Classes/1617-257b-AnalysisII/Planimeter/

