PSet 8: Partial Solutions

DISCLAIMER: I cannot claim that what I have written here constitutes a perfect solution. Certainly some mistakes are present; hopefully these mistakes aren't too severe. I hope that my answers may serve as a guide to you when studying for the final exam.

Problem 12.3

a)

We show that if f is integrable over $Q = A \times B$, then g is integrable over A, and $\int_{Q} f = \int_{A} g$. Let $\overline{I}(x) = \int_{y \in B} f(x, y)$, and $\underline{I}(x) = \int_{y \in B} f(x, y)$

 ${\it Proof.}$ By Problem 10.1 and by Theorem 10.3 in Munkres, we have the following relation:

$$\underline{\int}_{x \in A} \underline{I}(x) \le \underline{\int}_{x \in A} g(x) \le \overline{\int}_{x \in A} g(x) \le \overline{\int}_{x \in A} \overline{I}(x).$$
(1)

By Fubini's Theorem, since f is integrable over Q, then both \underline{I} and \overline{I} are integrable over A, and:

$$\int_{Q} f = \int_{x \in A} \underline{I}(x) = \int_{x \in A} \overline{I}(x).$$

It follows that the leftmost and rightmost terms in equation (1) are each equal to $\int_Q f$, so that

$$\int_{Q} f = \int_{\underline{x} \in A} g(x) \le \int_{x \in A} g(x) = \int_{Q} f.$$

Hence, $\int_{x\in A}g(x)=\bar{\int}_{x\in A}g(x)$, so that \int_Ag exists and is equal to \int_Qf , as required.

b)

Let A = B = [0, 1], and consider the function $f : [0, 1]^2 \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} 1, & \text{if } y = \frac{1}{2} \text{ and } x \in \mathbb{Q} \\ 0, & \text{otherwise} \end{cases}$$

Step 1: We show that $\int_{x\in A} \int_{y\in B} f(x,y)$ exists. Fix x. Then f(x,y) vanishes for all $y\in [0,1]$, except perhaps at the point $y=\frac{1}{2}$, if $x\in \mathbb{Q}$. In either case, f(x,y) vanishes for $y\in B$ except on a closed set of measure zero: $\{\frac{1}{2}\}$ if $x\in \mathbb{Q}$, and \varnothing otherwise. Thus, $\int_{y\in B} f(x,y)$ exists and equals 0 by Exercise 11.8 in Munkres, which was proved on a past problem set. Then $\int_{y\in B} f(x,y)$ is a constant function of x on A, and so $\int_{x\in A} \int_{y\in B} f(x,y)$ exists, as required.

Step 2: We show that $\int_{y\in B} \int_{x\in A} f(x,y)$ does not exist. Let $y=\frac{1}{2}$, and let $g(x)=f(x,\frac{1}{2})$. We claim that $\int_{x\in A} g(x)$ does not exist. For if P is any partition of A=[0,1] and R is any rectangle determined by P, then, since the rationals and irrationals are dense in [0,1], $m_R(g)=0$ and $M_R(g)=1$. Hence,

$$L(g,P) = \sum_{R} m_R(g)v(R) = \sum_{R} 0 \cdot v(R) = 0,$$

and

$$U(g, P) = \sum_{R} M_{R}(g)v(R) = \sum_{R} 1 \cdot v(R) = 1.$$

Since this holds for any partition P of A, then the upper and lower sums cannot be made arbitrarily close. Hence, $\int_{x\in A}g(x)=\int_{x\in A}f(x,\frac{1}{2})$ does not exist. Moreover, it follows that $\int_{y\in B}\int_{x\in A}f(x,y)$ does not exist.

Step 3: We show that $\int_Q^r f$ exists. We claim that f is continuous everywhere except on the line with $y=\frac{1}{2}$, or more formally, that its set of discontinuities is $D=\{(x,\frac{1}{2}):x\in[0,1]\}$. Take a point not in D. Since the line D is closed in $[0,1]^2$, then for any point $p\not\in D$ we may choose $\delta>0$ such that $B(p;\delta)\cap D=\varnothing$. Moreover, that f is discontinuous on D follows from the argument in Step 2. It remains to be shown that D is of measure zero, from which it follows by Theorem 11.2 that f is integrable on $[0,1]^2$. Given any $\epsilon>0$, let $Q_\epsilon=[0,1]\times[\frac{1}{2}-\epsilon/4,\frac{1}{2}+\epsilon/4]$. Then Q_ϵ is a covering by countably many rectangles which satisfies $v(Q_\epsilon)=\epsilon/2<\epsilon$.

 \mathbf{c}

Let A = B = [0, 1]. For each positive integer k, let $S_k = \{\frac{m}{2^k} : m \in \mathbb{N} \cap [1, 2^k - 1] \text{ and } m \text{ is odd}\}$, let $S \subset A \times B$ be defined as $S = \bigcup_k^\infty (S_k \times S_k)$, and define $f_S : A \times B \to \mathbb{R}$ by

$$f_S(x,y) = \begin{cases} 1, & \text{if } (x,y) \in S \\ 0, & \text{otherwise} \end{cases}$$

It is clear that f_S is bounded. This can be visualized by marking a point at the center of the unit square, then dividing this square into 4 equal squares and marking the points at the centers of each of these squares, and proceeding recursively on the 4 sub-squares of each of these squares.

Step 1: We show that $\int_{x\in A}\int_{y\in B}f_S(x,y)$ exists. Fix $x_0\not\in S$. Then $f_S(x_0,y)$ is identically zero for $y\in B=[0,1],$ so that $\int_{y\in B}f_S(x_0,y)=0$. If we instead choose to fix $x_1\in S$, so that x_1 may written in lowest terms as $x_1=\frac{m}{2^k}$ for some positive integer m, then there exist at most finitely many points y, i.e. for $y\in Y=\{1,3,5,...,2^k-1\},$ at which $f_S(x_1,y)=1\neq 0$. Note that since Y is a finite collection, it is closed set of measure zero in [0,1]. Hence, we may evoke exercise 11.8 in Munkres to conclude that $\int_{y\in B}f_S(x_1,y)$ exists and that $\int_{y\in B}f_S(x_1,y)=0$. It follows that $\int_{y\in B}f_S$ is identically zero for all $x\in A=[0,1],$ and so $\int_{x\in A}\int_{y\in B}f_S(x,y)=0$.

Step 2: That $\int_{y\in B} \int_{x\in A} f_S(x,y)$ exists can be demonstrated by an analogous argument.

Step 3: We claim that f_S is not integrable over $A \times B = [0,1]^2$. Let P be any partition of $[0,1]^2$. Then P can be expressed as $P = (P_A, P_B)$, where P_A is a partition of A and P_B is a partition of B. Consider any rectangle $R_A = [a, \alpha] \subset A$ determined by the partition P_A , and any rectangle $R_B = [b, \beta] \subset B$ determined by the partition P_B . Now, choose $N \in \mathbb{N}$ large enough that $\frac{1}{2^N} < \min(\alpha - a, \beta - b)$. Then there exists a pair of points of the form $\frac{m}{2^N}, \frac{m+1}{2^N}$ contained in the rectangle R_A , where m is some positive integer. Let m' equal whichever of m or m+1 is odd, and let $x_0 = \frac{m'}{2^N} \in R_A$. In an analogous manner, find a point $y_0 = \frac{n'}{2^N} \in R_B$ where n' is some odd positive integer. Then $x_0, y_0 \in S_N$, so that the point (x_0, y_0) is in our set S. It follows that $M_{R_A \times R_B}(f_S) = 1$. But clearly $m_{R_A \times R_B}(f_S) = 0$. Hence,

$$L(f_S, P) = \sum_{R_A \times R_B} 0 \cdot V(R_A \times R_B) = 0$$

and

$$U(f_S, P) = \sum_{R_A \times R_B} 1 \cdot V(R_A \times R_B) = V([0, 1]^2) = 1.$$

Since the partition P was chosen arbitrarily, it follows that $\underline{\int}_{A\times B} f_S = 0 \neq 1 = \overline{\int}_{A\times B} f_S$, and so f_S is not integrable over $A\times B$.

Problem A

Let $Q = [0,1]^3$, and $f: Q \to \mathbb{R}$ be a bounded and given by f(x,y,z) = 1 when x < y < z, and f(x,y,z) = 0 otherwise. We claim that $\int_Q f = \frac{1}{6}$.

Proof. By Fubini's Theorem, we may write:

$$\int_{Q} f = \int_{(y,z) \in [0,1]^2} \int_{x \in [0,1]} f(x,y,z).$$

We note that $\int_{x \in [0,1]} f(x,y,z)$ exists for any fixed $(y,z) \in [0,1]^2$; for if $y \ge z$, the function is zero for all $x \in [0,1]$, and if y < z, the function is discontinuous only at the point x = y, and hence only on a set of measure zero. Therefore,

$$\int_{Q} f = \int_{(y,z)\in[0,1]^2} \int_{x\in[0,1]} f(x,y,z)$$

If we assume that y < z, then f(x, y, z) = 1 for all $x \in [0, y)$ and so we have:

$$\begin{split} \int_{Q} f &= \int_{(y,z) \in [0,z] \times [0,1]} \int_{x \in [0,y]} 1 \\ &= \int_{(y,z) \in [0,z] \times [0,1]} y \end{split}$$

Since the function g(y)=y is continuous on $[0,z]\times[0,1],$ then by Corollary 12.4,

$$\int_{Q} f = \int_{z \in [0,1]} \int_{y \in [0,z]} y$$
$$= \int_{z \in [0,1]} \frac{z^{2}}{2}$$
$$= \frac{1}{6}$$