Core Algebra: Lecture 3, Homomorphisms and Normal Groups¹

Definition 2.1. If G and H are groups, a homomorphism (morphism) $\phi : G \to H$ is a map $\phi : G \to H$ which preserves all structure, i.e.

1. $\forall g_1, g_2 \in G, \phi(g_1g_2) = \phi(g_1)\phi(g_2)$

2.
$$\phi(e_G) = e_H$$

3.
$$\phi(g^{-1}) = \phi(g)^{-1}$$

Remark 2.2. Properties 2. and 3. follow from 1., hence need not be checked independently. Indeed, by 1.

$$\phi(e_G) = \phi(e_G e_G) = \phi(e_G)\phi(e_G)$$

Cancelling $\phi(e_G)$ on both sides, we get that $\phi(e_G) = e_H$. Furthermore,

$$e_H = \phi(e_G) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1}) \Rightarrow \phi(g^{-1}) = (\phi(g))^{-1}$$

Another property: $\phi(g^n) = (\phi(g))^n$.

(Groups, morphisms) is an example of a "category":

- 1. Morphisms can be composed and the result of composition is morphisms back again.
- 2. Every object (group) has a distinguished "identity morphism".

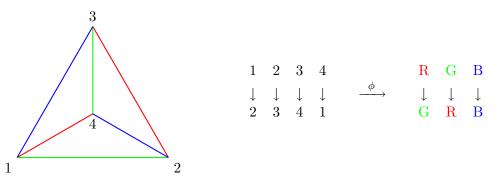
$$G \xrightarrow{\psi \circ \phi} H \xrightarrow{\psi} K \bigcup I_k$$

Examples

- 1. If V and W are vector spaces and $T: V \to W$ is a linear transformation, then $(V, +) \xrightarrow{T} (W, +)$ is a group morphism.
- 2. $(\mathbb{R}, +) \xrightarrow{exp} (\mathbb{R}_{>0}, +)$ $x \longmapsto e^x$
- 3. For H < G (i.e. H a subgroup of G), the inclusion $i_H : H \to G$ is a group morphism.
- 4. Given any $G, g \in G$, "conjugation by g" for $h \in G$: $h \mapsto h^g := g^{-1}hg \in G$. Properties of conjugation:
 - a) $(h_1h_2)^g = h_1^g h_2^g$ since $g^{-1}h_1h_2g = g^{-1}h_1gg^{-1}h_2g$ \Rightarrow conjugation is an endomorphism and $(h^n)^g = (h^g)^n$.
 - b) $h^{(g_1g_2)} = (h^{g_1})^{g_2} \Rightarrow (h^g)^{g^{-1}} = h^{(gg^{-1})} = h^e = h$ \Rightarrow conjugation is an "automorphism".
 - c) $(a^b)^c = (a^c)^{(b^c)}$

¹Notes from Professor Bar-Natan's Fall 2010 Algebra I class. All the mistakes are mine, please let me know if you find any! (ivahal@math.toronto.edu)

5. $\phi: S_4 \twoheadrightarrow S_3$. ϕ is defined using the observation that $S_4 = Aut(\triangle)$, the group of automorphisms of the tetrahedron, and if we use three colours, say red (**R**), green (G), and blue (**B**) to colour the edges of the tetrahedron using the same colour on opposite edges, then any element of $Aut(\triangle)$ preserves opposite colouredness. On the other hand, $S_3 = S(\mathbf{R}, G, \mathbf{B})$. So, for instance we have:



Claim 2.3. If $\phi: G \to H$ is a morphism, then $ker\phi := \phi^{-1}(e_H) < G$ and $im\phi < H$.

Moral: S_3 is an image of S_4 .

Question: Is S_3 (< S_4) also $ker\phi$ for some $\phi : S_4 \to (?)$? Remark 2.4. $\phi(h^g) = \phi(h)^{\phi(g)}$. So, if $h \in ker\phi$:

$$\phi(h^g) = \phi(h)^{\phi(g)} = e_H^{\phi(g)} = e_H \implies h^g \in ker\phi$$

Definition 2.5. N < G is called **normal** if $\forall n \in N, g \in G, n^g = g^{-1}ng \in N$, denoted $N \triangleleft G$. **Claim 2.6.** $(ker\phi) \triangleleft G$.

Now we can answer the earlier question by looking at: " $S_3 \triangleleft S_4$?":

$$[2\ 3\ 1\ 4]^{[1\ 2\ 4\ 3]} = [1\ 2\ 4\ 3]^{-1}[2\ 3\ 1\ 4][1\ 2\ 4\ 3] = [2\ 4\ 3\ 1] \notin S_3$$

So, S_3 is not normal in S_4 and hence there is not morphism from S_4 whose kernel is S_3 .

Question: Given $N \triangleleft G$, is there a surjective morphism $\phi : G \twoheadrightarrow H$ s.t. $N = ker\phi$? Yes.

Set-theoretic aside

Consider $\phi: G \twoheadrightarrow H$ where ϕ is a function and G and H are sets.

An equivalence relation on X is a relation $x \sim y$ s.t.

- 1. $x \sim x$ 2. $x \sim y \Rightarrow y \sim x$
- 3. $x \sim y, y \sim z \Rightarrow x \sim z$.

Then we have $X/\sim = \{[x]_{\sim} : x \in X\}, [x]_{\sim} = \{y : y \sim x\}$. X is thus decomposed into a disjoint union of equivalence classes. We also have:

$$\pi: X \twoheadrightarrow X/ \sim, \quad x \mapsto [x]$$

If $\phi: X \to Y$ is a surjection, define $x_1 \sim x_2$ if $\phi(x_1) = \phi(x_2)$.

Question: If ϕ existed and \sim was the corresponding equivalence relation, what properties would \sim have?

$$g_1 \sim g_2 \quad \Leftrightarrow \quad \phi(g_1) = \phi(g_2) \Leftrightarrow \phi(g_1)^{-1} \phi(g_2) = e_H \Leftrightarrow \phi(g_1^{-1}g_2) = e_H$$
$$\Leftrightarrow \quad g_1^{-1}g_2 \in N \Leftrightarrow g_1^{-1}g_2 = n \text{ for } n \in N \Leftrightarrow g_2 = g_1n \text{ for } n \in N$$
$$\Leftrightarrow \quad g_2 \in g_1N$$

Claim 2.7. If for N < G we define $g_1 \sim g_2$ if $g_1^{-1}g_2 \in N \Leftrightarrow g_2 \in g_1N$, then \sim is an equivalence relation.

Indeed, (checking transitivity) if $g_1 \sim g_2$ and $g_2 \sim g_3$ then $g_2 = g_1 n_1$, $g_3 = g_2 n_2$ and :

$$g_3 = g_2 n_2 = g_1 n_1 n_2 = g_1 (n_1 n_2) \Rightarrow g_1 \sim g_3 \text{ since } n_1 n_2 \in N$$

So G/\sim makes sense as a set:

$$\begin{array}{rcl} \phi:G & \to & G/\sim=G/N\\ g & \mapsto & [g]_{\sim}=[g]_N=[g] \end{array}$$

What abour multiplication? Thought process:

$$[g_1][g_2] = \phi(g_1)\phi(g_2) = \phi(g_1g_2) = [g_1g_2]$$

Definition 2.8. If $N \triangleleft G$, set $[g_1] \cdot [g_2] = [g_1g_2]$.

Claim 2.9. The above makes sense (\cdot is "well-defined"), i.e. if $g'_1 \sim g_1$ and $g'_2 \sim g_2$ then $[g'_1g'_2] = [g_1g_2]$ or in other words $g'_1g'_2 \sim g_1g_2$.

Proof. We have $g'_1 = g_1 n_1$, $g'_2 = g_2 n_2$, so:

$$g_1'g_2' = g_1n_1g_2n_2 = g_1g_2g_2^{-1}n_1g_2n_2 = g_1g_2n_1^{g_2}n_2 = g_1g_2n$$
 for some $n \in N$

where the last step follows from normality.

Theorem 2.10. (First Isomorphism Theorem) Given $\phi : G \to H$, $G/\ker\phi \cong im(\phi)$, *i.e.* there exists an invertible morphism $\psi : G/\ker\phi \to im(\phi)$.

Proof. Let $\psi : [g]_{ker\phi} \longmapsto \phi(g)$. Exercise:

- 1. ψ is well-defined.
- 2. ψ is a morphism.
- 3. ψ is invertible.

Proof. Use $g'_1 \mapsto g_2 g_1^{-1} g'_1$ for any $g'_1 \in [g_1]$.

Claim 2.11. Given N < G, \exists bijection $[g_1]_N \rightarrow [g_2]_N$ for any $g_1, g_2 \in G$.

Hence, all equivalence classes $[g] = \{gn : n \in N\}$ have the same size = |N| and so $|N| \mid |G|$.