Dror Bar-Natan: Talks: Hanoi-0708: Following Lin:
Expansions for Groups

Riverside, April 2000
o, September 2001

Vaughan's Hierarchy
(generalized, unauth
) Computation
) Formula
Θ Proof
Θ Theory
\ominus Dream

2

 Dror's Dream / Obsession:The bigger quest:
Understand quantum groups (I don't).
"Unify" quantum groups - find one object that contains all.
Example: One invariant to rule them all:

Easy! Universal! A Morphism! Unique! An Isomorphism! What is a "Quantum Group"? For now, a "deformation of the trivial" solution in $\mathcal{U}(\mathfrak{g}))^{\otimes *}[[\hbar]]$ of the major equations:

$$
\begin{array}{cc}
(\Delta \otimes 1) \Delta=(1 \otimes \Delta) \Delta & R^{-1} \Delta R=\Delta^{o p} \\
(\Delta \otimes 1) R=R^{23} R^{13} & (1 \otimes \Delta) R=R^{12} R^{13}
\end{array}
$$

(as well as a few minor equations).
Dror's Guess: A unified object exists; we'll need:

1. Expansions as in Lin / universal finite type invariants.
2. Naturality / functoriality.
3. Knotted graphs, especially trivalent.
4. Associators following Drinfel'd.
5. The work of Etingof and Kazhdan on bialgebras.

Why care?
Quantum groups
computable computable computable
invariants make!
6. Virtual braids / knots / knotted graphs. Edit!
7. Polyak (LMP 54) \& Haviv (arXiv:math/0211031) on arrow diagrams. (and when construction ends, we'll dump the scaffolding)
(Quasi?) Natural Expansions
$G \mapsto C(G)$ and $G \mapsto \mathcal{A}(G)$ are functors. Can you choose a ((quasi?) natural) Z satisfying $C\left(G_{1}\right) \xrightarrow[C(\Delta)]{ } C\left(G_{2}\right)$

Perhaps just on a subcategory of Groups? Perhaps Braids with strands addition, deletion and doubling:

$\begin{array}{ll}\text { Virtual Braids crossings are real, strands go virtual } \\ \text { Definition. } & \text { Lie bialgebras. }\end{array}$ Definition.
Crossings, $\quad \begin{aligned} & \text { Lie bialgebras. } \\ & \text { The } \mathfrak{g} \text { in a sum } \mathfrak{g} \oplus \mathfrak{g}^{\star}\end{aligned}$ modulo $\ll \begin{aligned} & \text { which in itself is a Lie } \\ & \text { algebra with subalge- }\end{aligned}$ Reidemeister moves,
but the linkages between
crossings are "virtual":

8. Z^{2} is an isomorphism.
9. ρ is an isomorphism.

Everything generalizes, step 2 sometimes becomes tricky.

The Kontsevich Integral for Braids

