Dror Bar-Natan: Talks: MSRI-0808:
Projectivization, w-Knots, Kashiwara-Vergne and Alekseev-Torossian
The Categorification Speculative Paradigm.

- Every object in math is the Euler characteristic of a complex.
- Every operation in math lifts to an operation between complexes.
- Every identity in mathematics is true up to homotopy.

The Projectivization Tentative Speculative Paradigm. Projectivization?

- Every graded algebraic structure in mathematics is the projectivization of a plain ("global") one.
- Every equation written in a graded algebraic structure is an equation for a homomorphic expansion, or for an automorphism of such.
- $e(x+y)=e(x) e(y)$ in $\mathbb{Q}[[x, y]] . \quad$ Graded Equations Examples
- The pentagon and hexagons in $\mathcal{A}\left(\uparrow_{3,4}\right)$.
- The equations defining a QUEA, the work of Etingof and Kazhdan.
- The Alekseev-Torossian equations in $\mathcal{U}\left(\right.$ sder $\left._{n}\right)$ and $\mathcal{U}\left(\operatorname{tder}_{n}\right)$.
sder \leftrightarrow tree-level \mathcal{A}
$F \in \mathcal{U}\left(\operatorname{tder}_{2}\right) ; \quad F^{-1} e(x+y) F=e(x) e(y) \quad \Longleftrightarrow \quad F \in \operatorname{Sol}_{0}$

$$
\Phi=\Phi_{F}:=\left(F^{12,3}\right)^{-1}\left(F^{1,2}\right)^{-1} F^{23} F^{1,23} \in \mathcal{U}\left(\operatorname{sder}_{3}\right)
$$

$\Phi^{1,2,3} \Phi^{1,23,4} \Phi^{2,3,4}=\Phi^{12,3,4} \Phi^{1,2,34} \quad$ "the pentagon"
$t=\frac{1}{2}(y, x) \in \operatorname{sder}_{2}$ satisfies $4 T \quad$ and $\quad r=(y, 0) \in \operatorname{tder}_{2}$ satisfies $6 T$ $R:=e(r)$ satisfies Yang-Baxter: $R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}$ also $R^{12,3}=R^{13} R^{23}$ and $F^{23} R^{1,23}\left(F^{23}\right)^{-1}=R^{12} R^{13}$
$\tau(F):=R F^{21} e(-t)$ is an involution, $\Phi_{\tau(F)}=\left(\Phi_{F}^{321}\right)^{-1}$ $\operatorname{Sol}_{0}^{\tau}:=\{F: \tau(F)=F\}$ is non-empty; for $F \in \operatorname{Sol}_{0}^{\tau}$,

$$
e\left(t^{13}+t^{23}\right)=\Phi^{213} e\left(t^{13}\right)\left(\Phi^{231}\right)^{-1} e\left(t^{23}\right) \Phi^{321}
$$

and $\quad e\left(t^{12}+t^{13}\right)=\left(\Phi^{132}\right)^{-1} e\left(t^{13}\right) \Phi^{312} e\left(t^{12}\right) \Phi$
Alekseev
This is just a part of the Alekseev-Torossian work!

- Related to the Kashiwara-Vergne Conjecture!
- Will likely lead to an explicit tree-level associator, a linear equation away from a 1-loop equation, two linear equations away from a 2-loop associator, etc.!
- A baby version of the QUEA equations; we may be on the right tracks!
Knotted Trivalent Graphs
$\mathcal{O}(\Delta)=\{\infty, \ldots$,

Theorem. KTG is generated by the unknotted Δ and the Möbius band, with identifiable relations between them.
Theorem. $Z(\Delta)$ is equivalent to an associator Φ.

Algebraic
Knot
Theory
Theorem. \{ribbon knots $\} \sim\{u \gamma: \gamma \in \mathcal{O}(\circ-), d \gamma=\bigcirc \bigcirc\}$. Hence an expansion for KTG may tell us about ribbon knots, knots of genus 5 , boundary links, etc.

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Defining proj \mathcal{O}. The augmentation "ideal":

$$
I=I_{\mathcal{O}}:=\left\{\begin{array}{l}
\text { formal differences of ob- } \\
\text { jects "of the same kind" }
\end{array}\right\}
$$

Then $I^{n}:=\left\{\begin{array}{l}\text { all outputs of algebraic } \\ \text { expressions at least } n \text { of } \\ \text { whose inputs are in } I\end{array}\right\}$, and

$$
\operatorname{proj} \mathcal{O}:=\bigoplus_{n \geq 0} I^{n} / I^{n+1} \quad\left(\begin{array}{l}
\text { has same kinds and opera- } \\
\text { tions, but different objects } \\
\text { and axioms }
\end{array}\right) .
$$

Knot Theory Anchors.

- $\left(\mathcal{O} / I^{n+1}\right)^{\star}$ is "type n invariants".
- $\left(I^{n} / I^{n+1}\right)^{\star}$ is "weight systems".
- $\operatorname{proj} \mathcal{O}$ is \mathcal{A}, "chord diagrams".

Warmup Examples.

- The projectivization of a group is a graded associative algebra.
- A quandle: a set Q with a binary op \wedge s.t.
$1 \wedge x=1, \quad x \wedge 1=x \wedge x=x, \quad$ (appetizers)

$$
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z)
$$

$\operatorname{proj} Q$ is a graded Lie algebra: set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:
$(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})$.
An Expansion is $Z: \mathcal{O} \rightarrow \operatorname{proj} \mathcal{O}$ s.t. $Z\left(I^{n}\right) \subset$ $(\operatorname{proj} \mathcal{O})_{\geq n}$ and $Z_{I^{n} / I^{n+1}}=I d_{I^{n} / I^{n+1}} \quad(\mathrm{~A}$ "universal finite type invariant"). In practice, it is hard to determine proj \mathcal{O}, but easy to guess a surjection $\rho: \mathcal{A} \rightarrow \operatorname{proj} \mathcal{O}$. So find $Z^{\prime}: \mathcal{O} \rightarrow \mathcal{A}$ with $Z^{\prime}\left(I^{n}\right) \subset \mathcal{A}_{\geq n}$ and $Z_{I^{n} / I^{n+1}}^{\prime} \circ \rho_{n}=I d_{\mathcal{A}_{n}}:$

Can you make this diagram less confusing?

Homomorphic Expansions are expansions that intertwine the algebraic structure on \mathcal{O} and $\operatorname{proj} \mathcal{O}$. They provide finite / combinatorial handles on global problems.

The Key Point. If \mathcal{O} is finitely presented, finding a homomorphic expansion is solving finitely many equations with finitely many unknowns, in some graded spaces.

