Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 2

Knot-Theoretic statement. There exists a homomorphic ex- From wTT to $\mathcal{A}^{w} . \mathrm{gr}_{m}$ wTT $:=\{m-\mathrm{cubes}\} /\{(m+1)-\mathrm{cubes}\}$: pansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:
(1)

ς

(3)

Diagrammatic statement. Let $R=\exp \hat{\uparrow} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that
(1)

Algebraic statement. With $I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}$, with $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow$ $\hat{\mathcal{H}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I \mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I \mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^{*}, with $r \in \mathfrak{g}^{*} \otimes \mathfrak{g}$ the identity element and with $R=e^{r} \in \hat{\mathcal{U}}(I \mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ and $V \in \hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2}$ so that
(1) $V(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\hat{\mathcal{U}}(I \mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
(2) $V \cdot S W V=1$
(3) $(c \otimes c)(V \Delta(\omega))=\omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^{G}$ and an (infinite order) tangential differential operator V defined on $\operatorname{Fun}\left(\mathfrak{g}_{x} \times\right.$ \mathfrak{g}_{y}) so that
(1) $V \widehat{e^{x+y}}=\widehat{e^{x}} \widehat{e^{y}} V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$-valued functions)
(2) $V V^{*}=I \quad$ (3) $V \omega_{x+y}=\omega_{x} \omega_{y}$

Group-Algebra statement. There exists $\omega^{2} \in \operatorname{Fun}(\mathfrak{g})^{G}$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^{G}$ (with small support), the following holds in $\hat{\mathcal{U}}(\mathfrak{g})$:
$\left(\operatorname{shhh}, \omega^{2}=j^{1 / 2}\right)$

$$
\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x+y}^{2} e^{x+y}=\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x) \psi(y) \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y}
$$

Convolutions statement (Kashiwara-Vergne). Convolutions of invariant functions on a Lie group agree with convolutions of invariant functions on its Lie algebra. More accurately, let G be a finite dimensional Lie group and let \mathfrak{g} be its Lie algebra, let $j: \mathfrak{g} \rightarrow \mathbb{R}$ be the Jacobian of the exponential map $\exp : \mathfrak{g} \rightarrow G$, and let $\Phi: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\mathfrak{g})$ be given by $\Phi(f)(x):=j^{1 / 2}(x) f(\exp x)$. Then if $f, g \in \operatorname{Fun}(G)$ are Ad-invariant and supported near the identity, then

$$
\Phi(f) \star \Phi(g)=\Phi(f \star g) .
$$

Diagrammatic to Algebraic. With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$, we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

Unitary \Longleftrightarrow Algebraic. The key is to interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differential operators on $\operatorname{Fun}(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of the action of $\operatorname{ad} x:(x \varphi)(y):=\varphi([x, y])$.
- $c: \hat{\mathcal{U}}(I \mathfrak{g}) \rightarrow \hat{\mathcal{U}}(I \mathfrak{g}) / \hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}\left(\mathfrak{g}^{*}\right)$ is "the constant term". Unitary \Longrightarrow Group-Algebra. $\iint \omega_{x+y}^{2} e^{x+y} \phi(x) \psi(y)$
$=\left\langle\omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y)\right\rangle=\left\langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y}\right\rangle$ $=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} V \phi(x) \psi(y) \omega_{x+y}\right\rangle=\left\langle\omega_{x} \omega_{y}, e^{x} e^{y} \phi(x) \psi(y) \omega_{x} \omega_{y}\right\rangle$
$=\iint \omega_{x}^{2} \omega_{y}^{2} e^{x} e^{y} \phi(x) \psi(y)$.
Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau: G \rightarrow A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong(A, \cdot)$ via $L: f \mapsto \sum f(a) \tau(a)$. For Lie (G, \mathfrak{g}),

with $L_{0} \psi=\int \psi(x) e^{x} d x \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_{1} \Phi^{-1} \psi=\int \psi(x) e^{x} \in$ $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_{i} \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}\left(\psi_{1}\right) \star \Phi^{-1}\left(\psi_{2}\right)$ and $\Phi^{-1}\left(\psi_{1} \star \psi_{2}\right)$ in $\hat{\mathcal{U}}(\mathfrak{g}): \quad$ (shhh, $L_{0 / 1}$ are "Laplace transforms")
\star in $G: \iint \psi_{1}(x) \psi_{2}(y) e^{x} e^{y}$ \star in $\mathfrak{g}: \iint \psi_{1}(x) \psi_{2}(y) e^{x+y}$
We skipped... • The Alexander • v-Knots, quantum groups and polynomial and Milnor numbers. Etingof-Kazhdan.
- u-Knots, Alekseev-Torossian, - BF theory and the successful and Drinfel'd associators. religion of path integrals.
- The simplest problem hyperbolic geometry solves.

