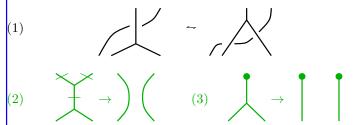
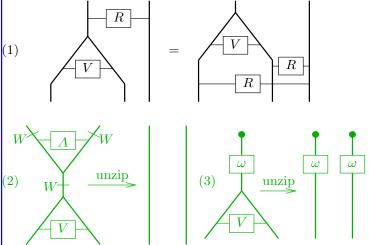
Convolutions on Lie Groups and Lie Algebras and Ribbon 2–Knots, Page 2

pansion Z for trivalent w-tangles. In particular, Z should respect R4 and intertwine annulus and disk unzips:



Diagrammatic statement. Let $R = \exp \bowtie \in \mathcal{A}^w(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^w(\uparrow)$ and $V \in \mathcal{A}^w(\uparrow\uparrow)$ so that



Algebraic statement. With $I\mathfrak{g}:=\mathfrak{g}^*\rtimes\mathfrak{g}, \text{ with } c:\hat{\mathcal{U}}(I\mathfrak{g})\to$ $\hat{\mathcal{U}}(I\mathfrak{g})/\hat{\mathcal{U}}(\mathfrak{g})=\hat{\mathcal{S}}(\mathfrak{g}^*)$ the obvious projection, with S the antipode of $\hat{\mathcal{U}}(I\mathfrak{g})$, with W the automorphism of $\hat{\mathcal{U}}(I\mathfrak{g})$ induced by flipping the sign of \mathfrak{g}^* , with $r \in \mathfrak{g}^* \otimes \mathfrak{g}$ the identity element the action of ad x: $(x\varphi)(y) := \varphi([x,y])$. and with $R = e^r \in \hat{\mathcal{U}}(I\mathfrak{g}) \otimes \hat{\mathcal{U}}(\mathfrak{g})$ there exist $\omega \in \hat{\mathcal{S}}(\mathfrak{g}^*)$ and $c: \hat{\mathcal{U}}(I\mathfrak{g}) \to \hat{\mathcal{U}}(I\mathfrak{g})/\hat{\mathcal{U}}(\mathfrak{g}) = \hat{\mathcal{S}}(\mathfrak{g}^*)$ is "the constant term". $V \in \hat{\mathcal{U}}(I\mathfrak{g})^{\otimes 2}$ so that

- $(1) \ V(\Delta \otimes 1)(R) = R^{13}R^{23}V \text{ in } \hat{\mathcal{U}}(I\mathfrak{g})^{\otimes 2} \otimes \hat{\mathcal{U}}(\mathfrak{g})$
- (2) $V \cdot SWV = 1$ (3) $(c \otimes c)(V\Delta(\omega)) = \omega \otimes \omega$

Unitary statement. There exists $\omega \in \operatorname{Fun}(\mathfrak{g})^G$ and an (infinite order) tangential differential operator V defined on Fun($\mathfrak{g}_x \times$ \mathfrak{g}_y) so that

- (1) $Ve^{x+y} = \hat{e}^x \hat{e}^y V$ (allowing $\hat{\mathcal{U}}(\mathfrak{g})$ -valued functions)

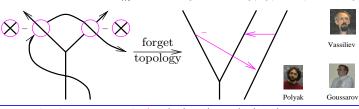
(2) $VV^* = I$ (3) $V\omega_{x+y} = \omega_x\omega_y$ Group-Algebra statement. There exists $\omega^2 \in \operatorname{Fun}(\mathfrak{g})^G$ so that for every $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^G$ (with small support), the following holds in $\mathcal{U}(\mathfrak{g})$:

$$\iint\limits_{\mathfrak{g}\times\mathfrak{g}}\phi(x)\psi(y)\omega_{x+y}^2e^{x+y}=\iint\limits_{\mathfrak{g}\times\mathfrak{g}}\phi(x)\psi(y)\omega_x^2\omega_y^2e^xe^y.$$
 (shhh, this is Duflo

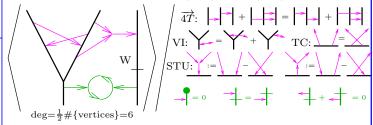
of invariant functions on its Lie algebra. More accurately, $\Phi^{-1}(\psi_1 \star \psi_2)$ in $\hat{\mathcal{U}}(\mathfrak{g})$: let G be a finite dimensional Lie group and let $\mathfrak g$ be its Lie algebra, let $j:\mathfrak g\to\mathbb R$ be the Jacobian of the exponential map $\exp:\mathfrak g\to G$, and let $\Phi:\operatorname{Fun}(G)\to\operatorname{Fun}(\mathfrak g)$ be given We skipped... • The Alexander • v-Knots, quantum groups and by $\Phi(f)(x) := j^{1/2}(x)f(\exp x)$. Then if $f,g \in \operatorname{Fun}(G)$ are polynomial and Milnor numbers. Etingof-Kazhdan. Ad-invariant and supported near the identity, then

$$\Phi(f) \star \Phi(q) = \Phi(f \star q).$$

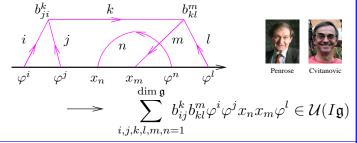
Knot-Theoretic statement. There exists a homomorphic ex- From wTT to \mathcal{A}^w . gr_m wTT := $\{m-\text{cubes}\}/\{(m+1)-\text{cubes}\}$:



w-Jacobi diagrams and \mathcal{A} . $\mathcal{A}^w(Y\uparrow) \cong \mathcal{A}^w(\uparrow\uparrow\uparrow)$



Diagrammatic to Algebraic. With (x_i) and (φ^j) dual bases of \mathfrak{g} and \mathfrak{g}^* and with $[x_i, x_j] = \sum b_{ij}^k x_k$, we have $\mathcal{A}^w \to \mathcal{U}$ via



Unitary \iff Algebraic. The key is to interpret $\mathcal{U}(I\mathfrak{g})$ as tangential differential operators on $Fun(\mathfrak{g})$:

- $\varphi \in \mathfrak{g}^*$ becomes a multiplication operator.
- $x \in \mathfrak{g}$ becomes a tangential derivation, in the direction of

Unitary
$$\Longrightarrow$$
 Group-Algebra.
$$\iint \omega_{x+y}^2 e^{x+y} \phi(x) \psi(y)$$

$$= \langle \omega_{x+y}, \omega_{x+y} e^{x+y} \phi(x) \psi(y) \rangle = \langle V \omega_{x+y}, V e^{x+y} \phi(x) \psi(y) \omega_{x+y} \rangle$$

$$= \langle \omega_x \omega_y, e^x e^y V \phi(x) \psi(y) \omega_{x+y} \rangle = \langle \omega_x \omega_y, e^x e^y \phi(x) \psi(y) \omega_x \omega_y \rangle$$

$$= \iint \omega_x^2 \omega_y^2 e^x e^y \phi(x) \psi(y).$$

Convolutions and Group Algebras (ignoring all Jacobians). If G is finite, A is an algebra, $\tau:G\to A$ is multiplicative then $(\operatorname{Fun}(G), \star) \cong (A, \cdot) \text{ via } L : f \mapsto \sum f(a)\tau(a). \text{ For Lie } (G, \mathfrak{g}),$

p-Algebra statement. There exists
$$\omega^2 \in \operatorname{Fun}(\mathfrak{g})^G$$
 so that $(\mathfrak{g}, \mathfrak{g})$ so that $(\mathfrak{g}, \mathfrak{g})$ wery $\phi, \psi \in \operatorname{Fun}(\mathfrak{g})^G$ (with small support), the following in $\hat{\mathcal{U}}(\mathfrak{g})$:
$$\iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x)\psi(y)\omega_{x+y}^2 e^{x+y} = \iint_{\mathfrak{g} \times \mathfrak{g}} \phi(x)\psi(y)\omega_x^2 \omega_y^2 e^x e^y.$$
(shhh, this is Duflo)
$$(\mathfrak{g}, \mathfrak{g}) = (\mathfrak{g}, \mathfrak{g}) + (\mathfrak{$$

Convolutions statement (Kashiwara-Vergne). Convolutions of with $L_0\psi = \int \psi(x)e^x dx \in \hat{\mathcal{S}}(\mathfrak{g})$ and $L_1\Phi^{-1}\psi = \int \psi(x)e^x dx \in \hat{\mathcal{S}}(\mathfrak{g})$ invariant functions on a Lie group agree with convolutions $\hat{\mathcal{U}}(\mathfrak{g})$. Given $\psi_i \in \operatorname{Fun}(\mathfrak{g})$ compare $\Phi^{-1}(\psi_1) \star \Phi^{-1}(\psi_2)$ and (shhh, $L_{0/1}$ are "Laplace transforms")

$$\star$$
 in $G:$ $\iint \psi_1(x)\psi_2(y)e^xe^y \qquad \star$ in $\mathfrak{g}:$ $\iint \psi_1(x)\psi_2(y)e^{x+y}$

- and Drinfel'd associators.
- \bullet u-Knots, Alekseev-Torossian, \bullet BF theory and the successful religion of path integrals.

• The simplest problem hyperbolic geometry solves.