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Just for fun.

Convolutions on Lie Groups and Lie Algebras and Ribbon 2−Knots "God created the knots, all else in
topology is the work of mortals."

Leopold Kronecker (modified)Dror Bar−Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn−0908
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"An Algebraic Structure"

[1] http://qlink.queensu.ca/~4lb11/interesting.html
Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

www.math.toronto.edu/~drorbn/Talks/KSU−090407
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A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.
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The w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W 2 = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

Our case(s).

K Z: high algebra−−−−−−−−−−−−−→
solving finitely many
equations in finitely
many unknowns

A :=
grK

given a “Lie”
algebra g−−−−−−−−−−→

low algebra: pic-
tures represent
formulas

“U(g)”

K is knot theory or topology; grK is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”).

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtration respecting Z : K → grK that
“covers” the identity on grK. A homomorphic expansion is
an expansion that respects all relevant “extra” operations.

Example: Pure Braids. PBn is generated by xij , “strand i
goes around strand j once”, modulo “Reidemeister moves”.
An := grPBn is generated by tij := xij − 1, modulo the 4T
relations [tij , tik + tjk] = 0 (and some lesser ones too). Much
happens in An, including the Drinfel’d theory of associators.
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• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.

29/5/10, 8:42am

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/
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