w-Knots from Z to A Dror Bar-Natan, Luminy, April 2010 http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/
Abstract I will define w-knots, a class of knots wider than ordinary knots but weaker than virtual knots, and show that it is quite easy to construct a universal finite invariant Z of w-knots. In order to study Z we will introduce the "Euler Operator" and the "Infinitesimal Alexander Module", at the end finding a simple determinant formula for Z. With no doubt that formula computes the Alexander polynomial A, except I don't have a proof yet.

\rightarrow

$\overrightarrow{S T U}_{3}=\mathrm{TC}: 0=$
Corollaries. (1) Related to Lie algebras! (2) Only wheels and isolated arrows persist. Habiro - can you do better? The Alexander Theorem. $\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$,

Conjecture. For u-knots, A is the Alexander polynomial. Theorem. With $w: x^{k} \mapsto w_{k}=($ the k-wheel $)$,

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

Proof Sketch. Let E be the Euler operator, "multiply anything by its degree", $f \mapsto x f^{\prime}$ in $\mathbb{Q} \llbracket x \rrbracket$, so $E e^{x}=x e^{x}$ and
$E Z=\xrightarrow[\text { ned to show that } Z^{-1} E Z=N^{\prime}-\operatorname{tr}\left((I-B)^{-1} T S e^{-x S}\right) w_{1}]{+}$ with $B=T\left(e^{-x S}-I\right)$. Note that $a e^{b}-e^{b} a=\left(1-e^{\operatorname{ad} b}\right)(a) e^{b}$ implies

So What? - Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)

- New (?) formula for Alexander, new (?) "Infinitesimal Alexander Module". Related to Lescop's arXiv:1001.4474?
- An "ultimate Alexander invariant": local, composes well, behaves under cabling. Ought to also generalize the multi-variable Alexander polynomial and the theory of Milnor linking numbers.
- Tip of the Alekseev-Torossian-Kashiwara-Vergne iceberg (AT: The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300).
- Tip of the v-knots iceberg. May lead to other polynomial-time polynomial invariants. "A polynomial's worth a thousand exponentials". Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

