Day $1-u$, v, w: topology and philosophy
Dror Bar-Natan, Goettingen, April 2010
Plans and Dreams $\binom{$ arbitrary algebraic }{ structure }$\frac{\text { projectivization }}{\text { machine }}\left(\begin{array}{lll}\text { a } & \text { problem in } \\ \text { graded algebra }\end{array}\right)$

- Feed knot-things, get Lie algebra things.

Feed u-knots, get Drinfel'd associators.
Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.
Dream: Feed v-knots, get Etingof-Kazhdan.

- Dream: Knowing the question whose answer is 42 , or $\mathrm{E}-\mathrm{K}$, will be useful to algebra and topology.

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with $D_{2} \cap \partial B=\partial D_{2}$ modulo isotopies of S alone.

The w-relations include R234, VR1234, M, Overcrossings Commute (OC) but not UC:

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

u, v, and w-Knots: Topology, Combinatorics and Low and High Algebra http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :

$\Downarrow \quad \downarrow_{Z}$
ops $\odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtration respecting $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the identity on gr \mathcal{K}. A homomorphic expansion is an expansion that respects all relevant "extra" operations.

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products").
Examples. 1. The projectivization of a group is a graded associative algebra. 2. Quandle: a set Q with an op \wedge s.t.

$$
\begin{aligned}
& 1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
& (x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) . \quad \text { (main) }
\end{aligned}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$
(these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

Our case(s).
\mathcal{K} is knot theory or topology; $\operatorname{proj} \mathcal{K}=\bigoplus \mathcal{I}^{m} / \mathcal{I}^{m+1}$ is finite combinatorics: bounded-complexity diagrams modulo simple relations.

