$\mathrm{wTT}=\mathrm{CA}\left\langle\begin{array}{c|c|c}\mathrm{w}- & \mathrm{w}- & \text { unary w- } \\ \text { generators } & \text { relations } & \text { operations }\end{array}\right\rangle$

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC, $W^{2}=1$, and funny interactions between the wen and the cap and over- and under-crossings:

w-Jacobi diagrams and $\mathcal{A} \cdot \mathcal{A}^{w}(Y \uparrow) \cong \mathcal{A}^{w}(\uparrow \uparrow \uparrow)$ is

An Associator:

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$

satisfying the "pentagon", $((A B) C) D \longrightarrow(A B)(C D)$

$\ell^{\prime 1}$	$\begin{aligned} & 1) \Phi \\ & (11 \Delta) \Phi \\ & V \end{aligned}$
$(A(B C)) D$	$A(B(C D))$
Φ	(

$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$
The hexagon? Never heard of it.

Etingof-Kazhdan yet, and I'm clueless about Kontsevich Dror Bar-Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/ Knot-Theoretic statement. There exists a homomorphic expansion Z for trivalent w-tangles. In particular, Z should respect $R 4$ and intertwine annulus and disk unzips:

\checkmark

(2)

(3)

Diagrammatic statement. Let $R=\exp \hat{\wedge} \hat{\wedge} \in \mathcal{A}^{w}(\uparrow \uparrow)$. There exist $\omega \in \mathcal{A}^{w}(\uparrow)$ and $V \in \mathcal{A}^{w}(\uparrow \uparrow)$ so that

(1) $V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V$ in $\mathcal{A}^{w}(\uparrow \uparrow \uparrow)$

(3) $V \cdot \Delta(\omega)=\omega \otimes \omega$ in $\mathcal{A}^{w}(\uparrow \uparrow)$
(2) $V V^{*}=I$ in $\mathcal{A}^{w}(\uparrow \uparrow)$

Alekseev-Torossian statement. There are elements $F \in$ TAut $_{2}$ and $a \in \mathfrak{t r}_{1}$ such that
$F(x+y)=\log e^{x} e^{y} \quad$ and $\quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)$. Theorem. The Alekseev-Torossian statement is equivalent to the knot-theoretic statement.
Proof. Write $V=e^{c} e^{u D}$ with $c \in \mathfrak{t r}_{2}, D \in \mathfrak{t d e r}_{2}$, and $\omega=e^{b}$ with $b \in \mathfrak{t r}_{1}$. Then $(1) \Leftrightarrow e^{u D}(x+y) e^{-u D}=\log e^{x} e^{y}$,
$(2) \Leftrightarrow I=e^{c} e^{u D}\left(e^{u D}\right)^{*} e^{c}=e^{2 c} e^{j D}$, and
$(3) \Leftrightarrow e^{c} e^{u D} e^{b(x+y)}=e^{b(x)+b(y)} \Leftrightarrow e^{c} e^{b\left(\log e^{x} e^{y}\right)}=e^{b(x)+b(y)}$
$\Leftrightarrow c=b(x)+b(y)-b\left(\log e^{x} e^{y}\right)$.
The Alekseev-Torossian Correspondence.
\{Drinfel'd Associators $\} \leftrightarrows\{$ Solutions of KV $\}$.
We need an even bigger algebraic structure!
$\binom{$ green knotted trivalent }{ graphs in $\mathbb{R}^{3}(u)} \xrightarrow{\alpha_{e}}\binom{$ blue tubes and red }{ strings in $\mathbb{R}^{4}(\overline{\mathrm{w}})}$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/

