1． $\operatorname{proj} \mathcal{K}^{w}\left(\uparrow_{n}\right) \cong_{j} \mathcal{U}\left(\left(\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}\right) \ltimes \mathfrak{t r}_{n}\right)$ ，continued．Wheels and Trees．With \mathcal{P} for \mathcal{P} rimitives，

Goussarov－Polyak－Viro

exact?

Imperfect Thumb－Rule．Take R3（say），substitute $火 \rightarrow X+S$ 2，keep the lowest degree terms that don＇t immediately die：
 The Bracket－Rise Theorem．

Proof．
 －
Corollaries．（1）Related to Lie algebras！（2）Only wheels and isolated arrows persist．
To Lie Algebras．With $\left(x_{i}\right)$ and $\left(\varphi^{j}\right)$ dual bases of \mathfrak{g} and \mathfrak{g}^{*} and with $\left[x_{i}, x_{j}\right]=\sum b_{i j}^{k} x_{k}$ ，we have $\mathcal{A}^{w} \rightarrow \mathcal{U}$ via

$$
\longrightarrow \sum_{i, j, k, l, m, n=1}^{\operatorname{dim} \mathfrak{g}} b_{i j}^{k} b_{k l}^{m} \varphi^{i} \varphi^{j} x_{n} x_{m} \varphi^{l} \in \mathcal{U}\left(I \mathfrak{g}:=\mathfrak{g}^{*} \rtimes \mathfrak{g}\right)
$$

Theorem（PBW，${ }^{\mathcal{U}}(I \mathfrak{g}){ }^{\otimes n} \cong \mathcal{S}(I \mathfrak{g})^{\otimes n ")}$ ）．As vector spaces， $\mathcal{A}^{w}\left(\uparrow_{n}\right) \cong \mathcal{B}_{n}$ ，where

$x_{1}, \ldots, x_{n}, \operatorname{lie}_{n}=\operatorname{lie}\left(\mathfrak{a}_{n}\right)$ is the free Lie algebra，Ass $=$ $\mathcal{U}\left(\mathrm{fix}_{n}\right)$ is the free associative algera＂of words＂， $\operatorname{tr}: \mathrm{Ass}_{n}^{+} \rightarrow$ $\mathfrak{t r}_{n}=\operatorname{Ass}_{n}^{+} /\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=x_{i_{2}} \cdots x_{i_{m}} x_{i_{1}}\right)$ is the＂trace＂into ＂cyclic words＂， $\mathfrak{d e r}_{n}=\mathfrak{d e r}\left(\mathfrak{l i e}_{n}\right)$ are all the derivations，and

$$
\mathfrak{t d e r}_{n}=\left\{D \in \mathfrak{d e r}_{n}: \forall i \exists a_{i} \text { s.t. } D\left(x_{i}\right)=\left[x_{i}, a_{i}\right]\right\}
$$

are＂tangential derivations＂，so $D \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)$ is a vec－ tor space isomorphism $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n} \cong \bigoplus_{n} \mathfrak{l i e}_{n}$ ．Finally，div ： $\mathfrak{t d e r}_{n} \rightarrow \mathfrak{t r}_{n}$ is $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum_{k} \operatorname{tr}\left(x_{k}\left(\partial_{k} a_{k}\right)\right)$ ，where for $a \in \mathrm{Ass}_{n}^{+}, \partial_{k} a \in \mathrm{Ass}_{n}$ is determined by $a=\sum_{k}\left(\partial_{k} a\right) x_{k}$, and $j: \mathrm{TAut}_{n}=\exp \left(\mathfrak{t d e r}_{n}\right) \rightarrow \mathfrak{t r}_{n}$ is $j\left(e^{D}\right)=\frac{e^{D}-1}{D} \cdot \operatorname{div} D$ ．
Theorem．Everything matches．〈trees〉 is $\mathfrak{a}_{n} \oplus \mathfrak{t d e r}_{n}$ as Lie algebras，$\left\langle\right.$ wheels〉 is $\mathfrak{t r}_{n}$ as \langle trees $\rangle / \mathfrak{t} \mathfrak{e r}_{n}$－modules，div $D=$ \left.${c^{-1}}^{-1} u-l\right)(D)$ ，and $e^{u D} e^{-l D}=e^{j D}$ ．
Differential Operators．Interpret $\hat{\mathcal{U}}(I \mathfrak{g})$ as tangential differen－ tial operators on $\operatorname{Fun}(\mathfrak{g})$ ：
－$\varphi \in \mathfrak{g}^{*}$ becomes a multiplication operator．
－$x \in \mathfrak{g}$ becomes a tangential derivation，in the direction of the action of ad $x:(x \varphi)(y):=\varphi([x, y])$ ．
Trees become vector fields and $u D \mapsto l D$ is $D \mapsto D^{*}$ ．So $\operatorname{div} D$ is $D-D^{*}$ and $j D=\log \left(e^{D}\left(e^{D}\right)^{*}\right)=\int_{0}^{1} d t e^{t D} \operatorname{div} D$ ．
Special Derivations．Let $\mathfrak{s j e r}_{n}=\left\{D \in \mathfrak{t d e r}_{n}: D\left(\sum x_{i}\right)=0\right\}$ ． Theorem． $\mathfrak{s d e r}_{n}=\pi \alpha$（proj u－tangles），where α is the obvious map proju－tangles \rightarrow proj w－tangles．
Proof．After decoding，this becomes Lemma 6.1 of Drinfel＇d＇s amazing $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ paper．
The Alexander Theorem．$\quad T_{i j}=|\operatorname{low}(\# j) \in \operatorname{span}(\# i)|$ ，

Conjecture．For u－knots，A is the Alexander polynomial． Theorem．With $w: x^{k} \mapsto w_{k}=($ the k－wheel），

$$
Z=N \exp _{\mathcal{A}^{w}}\left(-w\left(\log _{\mathbb{Q} \llbracket x \rrbracket} A\left(e^{x}\right)\right)\right) \quad \begin{array}{r}
\bmod w_{k} w_{l}=w_{k+l}, \\
Z=N \cdot A^{-1}\left(e^{x}\right)
\end{array}
$$

This is the ultimate Alexander invariant！computable in poly－ nomial time，local，composes well，behaves under cabling． Seems to significantly generalize the multi－variable Alexander polynomial and the theory of Milnor linking numbers．But it＇s ugly，and much work remains．

Video and more at http：／／www．math．toronto．edu／～drorbn／Talks／Montpellier－1006／

