Cans and Can't Yets.
$\binom{$ arbitrary algebraic }{ structure }$\xrightarrow[\text { machine }]{\text { projectivization }}\binom{$ a problem in }{ graded algebra }$\xrightarrow{\text { The chno }}$ Alas Feed knot-things, get Lie algebra things.

- (u-knots) \rightarrow (Drinfel'd associators).
- (w-knots) \rightarrow (K-V-A-E-T).
- Dream: (v-knots) \rightarrow (Etingof-Kazhdan).
- Clueless: (???) \rightarrow (Kontsevich)?
- Goals: add to the Knot Atlas, produce a working AKT and touch ribbon 1-knots, rip benefits from truly understanding quantum groups.

Circuit Algebras

A Ribbon 2-Knot is a surface S embedded in \mathbb{R}^{4} that bounds an immersed handlebody B, with only "ribbon singularities"; a ribbon singularity is a disk D of trasverse double points, whose preimages in B are a disk D_{1} in the interior of B and a disk D_{2} with_ $D_{2} \cap \underset{\Gamma}{\partial B}=\partial D_{2}$, modulo isotopies of S_{-}alone.

The w-relations include R234, VR1234, D, Overcrossings Commute (OC) but not UC:

yet not \uparrow

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)
Also see http://www.math.toronto.edu/~drorbn/papers/WKO

- Has kinds, objects, operations, and maybe constants.
- Perhaps subject to some axioms.
- We always allow formal linear combinations.

Homomorphic expansions for a filtered algebraic structure \mathcal{K} :
${ }_{\text {ops }} \odot \mathcal{K}=\mathcal{K}_{0} \supset \mathcal{K}_{1} \supset \mathcal{K}_{2} \supset \mathcal{K}_{3} \supset \ldots$
\Downarrow
\downarrow_{Z}
ops $\odot \operatorname{gr} \mathcal{K}:=\mathcal{K}_{0} / \mathcal{K}_{1} \oplus \mathcal{K}_{1} / \mathcal{K}_{2} \oplus \mathcal{K}_{2} / \mathcal{K}_{3} \oplus \mathcal{K}_{3} / \mathcal{K}_{4} \oplus \ldots$ An expansion is a filtered $Z: \mathcal{K} \rightarrow$ gr \mathcal{K} that "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations.
Reality. gr \mathcal{K} is often too hard. An \mathcal{A}-expansion is a graded "guess" \mathcal{A} with a surjection $\tau: \mathcal{A} \rightarrow \operatorname{gr} \mathcal{K}$ and a filtered Z : $\mathcal{K} \rightarrow \mathcal{A}$ for which $(\operatorname{gr} Z) \circ \tau=I_{\mathcal{A}}$. An \mathcal{A}-expansion confirms \mathcal{A} and yields an ordinary expansion. Same for "homomorphic".

Filtered algebraic structures are cheap and plenty. In any \mathcal{K}, allow formal linear combinations, let $\mathcal{K}_{1}=\mathcal{I}$ be the ideal generated by differences (the "augmentation ideal"), and let $\mathcal{K}_{m}:=\left\langle\left(\mathcal{K}_{1}\right)^{m}\right\rangle$ (using all available "products"). In this case, set $\operatorname{proj} \mathcal{K}:=\operatorname{gr} \mathcal{K}$.
Examples. 1. The projectivization of a group is a graded associative algebra.
2. Pure braids - $P B_{n}$ is generated by $x_{i j}$, "strand i goes around strand j once", modulo "Reidemeister moves". $A_{n}:=$ $\operatorname{gr} P B_{n}$ is generated by $t_{i j}:=x_{i j}-1$, modulo the $4 T$ relations $\left[t_{i j}, t_{i k}+t_{j k}\right]=0$ (and some lesser ones too). Much happens in A_{n}, including the Drinfel'd theory of associators.
3. Quandle: a set Q with an op \wedge s.t.

$$
\begin{gathered}
1 \wedge x=1, \quad x \wedge 1=x, \quad \text { (appetizers) } \\
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \quad \text { (main) }
\end{gathered}
$$

$\operatorname{proj} Q$ is a graded Leibniz algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

