18 Conjectures
Dror Bar-Natan, Chicago, September 2010
http://www.math.toronto.edu/ \sim drorbn/Talks/Chicago-1009/

Abstract. I will state $18=3 \times 3 \times 2$ "fundamental" conjectures on finite type invariants of various classes of virtual knots. This done, I will state a few further conjectures about these conjectures and ask a few questions about how these 18 conjectures may or may not interact.

Following "Some Dimensions of Spaces of Finite Type Invariants of Virtual Knots", by B-N, Halacheva, Leung, and Roukema, http://www.math.

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

Definitions

$$
\mathcal{V}_{n}=\left(v \mathcal{K} / \mathcal{I}^{n+1}\right)^{*}
$$ is one thing we measure..

"arrow diagrams"

$$
\mathcal{V}_{n} / \mathcal{V}_{n-1}
$$

$\mathcal{W}_{n}=\left(\mathcal{D}_{n} / \mathcal{R}_{n}^{D}\right)^{*}=\left(\mathcal{A}_{n}\right)^{*}$ is the other thing we measure...
The Polyak Technique

$$
v \mathcal{K}=\mathrm{CA}_{\mathbb{Q}}\langle\mathcal{Q}\rangle / \mathcal{R}^{\circ}=\{8 T, \text { etc. }\}
$$

fails in

8T:

This is a computable space!

the u case equations.

- In the w case, these are the Kashiwara-Vergne-AlekseevTorossian equations. Composed with $\mathcal{T}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get Iorossian equations. Composed with $\mathcal{F}_{\mathfrak{g}}: \mathcal{A} \rightarrow \mathcal{U}$, you get
that the convolution algebra of invariant functions on a Lie group is isomorphic to the convolution algebra of invariant functions on its Lie algebra.
- In the v case there are strong indications that you'd get the equations defining a quantized universal enveloping algebra equations defining a quantized universal enveloping algebra
and the Etingof-Kazhdan theory of quantization of Lie bialgebras. That's why I'm here!

Theorem. For u-knots, $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}=\operatorname{dim} \mathcal{W}_{n}$ for all n.
Proof. This is the Kontsevich integral, or the "Fundamental Theorem of Finite Type Invariants". The known proofs use QFT-inspired differential geometry or associators and some homological computations.
Two tables. The following tables show $\operatorname{dim} \mathcal{V}_{n} / \mathcal{V}_{n-1}$ and $\operatorname{dim} \mathcal{W}_{n}$ for $n=$ $1, \ldots, 5$ for 18 classes of v-knots:

relations \backslash skeleton		round (\bigcirc)	long (\longrightarrow)	flat $\left({ }^{\pi}=\lambda^{7}\right)$
standard	mod R1	$0,0,1,4,17 \bullet$	$0,2,7,42,246 \bullet \bullet$	$0,0,1,6,34 \bullet$
R2b R2c R3b	no R1	$1,1,2,7,29$	$2,5,15,67,365$	$1,1,2,8,42$
braid-like	mod R1	$0,0,1,4,17 \bullet$	$0,2,7,42,246$	$0,0,1,6,34 \bullet$
R2b R3b	no R1	$1,2,5,19,77$	$2,7,27,139,813$	$1,2,6,24,120$
R2 only	mod R1	$0,0,4,44,648$	$0,2,28,420,7808$	$0,0,2,18,174$
R2b R2c	no R1	$1,3,16,160,2248$	$2,10,96,1332,23880$	$1,2,9,63,570$

18 Conjectures. These 18 coincidences persist.

Comments. $0,0,1,4,17$ and $0,2,7,42,246$. These are the "standard" virtual knots.
$2,7,27,139,813$. These best match Lie bi-algebra. Leung computed the bi-algebra dimensions to be \geq $2,7,27,128$.
-•. We only half-understand these equalities.

$1,2,6,24,120$. Yes, we noticed. Karene Chu is proving all about this, including the classification of flat knots.
$1,1,2,8,42,258,1824,14664, \ldots$, which is probably http://www. research.att.com/~njas/sequences/A013999.
What about w? See other side. What about flat and round? What about v-braids? I don't know. Likely fails!

Bang. Recall the surjection $\bar{\tau}: \mathcal{A}_{n}=\mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$. A filtered map $Z: v \mathcal{K} \rightarrow \mathcal{A}=\bigoplus \mathcal{A}_{n}$ such that $(\operatorname{gr} Z) \circ \bar{\tau}=I$ is called a universal finite type invariant, or an "expansion". ${ }^{1}$ Theorem. Such Z exist iff $\bar{\tau}: \mathcal{D}_{n} / \mathcal{R}_{n}^{D} \rightarrow \mathcal{I}^{n} / \mathcal{I}^{n+1}$ is an isomorphism for every class and every n, and iff the 18 con- jectures hold true.
The Big Bang. Can you find a "homomorphic expansion" Z - an expansion that is also a morphism of circuit algebras? Perhaps one that would also intertwine other operations, such as strand doubling? Or one that would extend to v-knotted trivalent graphs?

- Using generators/relations, finding Z is an exercise in solving equations in graded spaces.
- In the u case, these are the Drinfel'd pentagon and hexagon functions on its Lie algebra

[^0]www.katlas.org

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

[^0]: 4. 3 "God created the knots, all else in topology is the work of mortals."
 Leopold Kronecker (modified)
