Abstract. I will present the simplest-ever "quantum" formula for the Alexander polynomial, using only the unique two dimensional non-commutative Lie algebra (the one associated with the " $a x+b$ " Lie group). After introducing the "Euler technique" and some diagrammatic calculus I will sketch the proof of the said formula, and following that, I will present a long list of extensions, generalizations, and dreams.
The 2D Lie Algebra. Let $\mathfrak{g}=\mathfrak{l i e}\left(x^{1}, x^{2}\right) /\left[x^{1}, x^{2}\right]=x^{2}$, let $\mathfrak{g}^{*}=\left\langle\phi_{1}, \phi_{2}\right\rangle$ with $\phi_{i}\left(x^{j}\right)=\delta_{i}^{j}$, let $I \mathfrak{g}=\mathfrak{g}^{*} \rtimes \mathfrak{g}$ so $\left[\phi_{i}, \phi_{j}\right]=\left[\phi_{1}, x^{i}\right]=0$ while $\left[x^{1}, \phi_{2}\right]=-\phi_{2}$ and $\left[x^{2}, \phi_{2}\right]=\phi_{1}$. Let $r=I d=\phi_{1} \otimes x^{1}+\phi_{2} \otimes x^{2} \in \mathfrak{g}^{*} \otimes \mathfrak{g} \subset I \mathfrak{g} \otimes I \mathfrak{g}$. Let $\mathcal{U}=\{$ words in $I \mathfrak{g}\} / a b-b a=[a, b]$, degree-completed with respect to $\operatorname{deg} \phi_{i}=1$ and $\operatorname{deg} x^{i}=0$ (so $\mathcal{U} \equiv$ (power series is 4 variables)). Let $R=\exp (r) \in \mathcal{U} \otimes \mathcal{U}$.
The Invariant. Define Z : \{long knots\} $\rightarrow \mathcal{U}$ by mapping every \pm-crossing to $R^{ \pm 1}$:

Alexander

$\cdots+\frac{1}{2!} \frac{(-1)^{3}}{3!} \frac{1}{1!}\left(\phi_{2} \phi_{1}\right)\left(\phi_{2} \phi_{1} \phi_{2}\right)\left(\overrightarrow{\left.x^{2} x^{1}\right)} \underset{\left(x^{1}\right)\left(\overrightarrow{x^{2} x^{1} x^{2}}\right)\left(\phi_{1}\right)+\cdots}{ }\right.$
Near Theorem. Z is invariant, and it is essentially the Alexander polynomial; with $N=\exp \left(\vec{l} \phi_{i} x^{i}+\overleftarrow{l} x^{i} \phi_{i}\right)=: \exp (S L)$,

$$
\begin{equation*}
Z(K)=N \cdot\left(A(K)\left(e^{\phi_{1}}\right)\right)^{-1} \tag{1}
\end{equation*}
$$

Invariance. "The identity is an invariant tensor":

The Euler Prelude. Apply $\tilde{E} \zeta:=\zeta^{-1} E \zeta$ to (1):

Some Relations. $\phi_{i} x^{i}, x^{i} \phi_{i}, \phi_{1}$ are central, $x^{i} \phi_{i}-\phi_{i} x^{i}=\phi_{1}$,
 and the famed "tails commute" (TC):

Near Proof. Let $\lambda_{\alpha j}$ be a red arrow with tail at a_{α} and head just left of h_{j}. Let $\Lambda=\left(\lambda_{\alpha j}\right)$. Then roughly $R \Lambda=\phi_{1} I$ so roughly, $\Lambda=R^{-1} \phi_{1}$. The rest is book-keeping that I haven't finished yet, yet with which my computer agrees fully.

I don't understand the Alexander polynomial!

[^0]An Alexander Reminder. Number the arrows $1, \ldots, n$, let t_{j}, h_{j} be the tail and head of arrow j, and let $s_{j} \in \pm 1$ be its sign. Cut the skeleton into arcs a_{α} by arrow heads, and $\left(\begin{array}{cccc}0 & -1 & X & 1-X\end{array}\right)$ let $\alpha(p)$ be "the arc of point p ". Let $R \in M_{n \times(n+1)}$ be the matrix whose j 'th row has -1 in column $\alpha\left(h_{j}\right)$ and $1-X^{s_{j}}$ in column $\alpha\left(t_{j}\right)$ and $X^{s_{j}}$ in column $\alpha\left(h_{j}\right)+1$, and let M be R with a column removed. Then $A(X)=\operatorname{det}(M)$.
An Euler Interlude. If you know brackets, how do you test exponentials? When's $e^{A} e^{B}=e^{C} e^{D}$?
Bad Idea. Take log and use BCH. You'll want to cry.
Clever Idea. Let E be the Euler derivation, which multiplies each element by its degree (e.g. on $\mathbb{Q}[\phi], E f=$ $\phi \partial_{\phi} f$, so $\left.E e^{\phi}=\phi e^{\phi}\right)$. Apply $\tilde{E} \zeta:=\zeta^{-1} E \zeta: \tilde{E}\left(e^{A} e^{B}\right)=$ $e^{-B} e^{-A}\left(e^{A} A e^{B}+e^{A} e^{B} B\right)=e^{-B} A e^{B}+B=e^{-\mathrm{ad} B}(A)+B$.
"Uninterpreting" Diagrams. Make $Z^{w}: \mathcal{K}^{w} \rightarrow \mathcal{A}^{w} \rightarrow \mathcal{U}$, with
 $\mathcal{K}^{w}=C A\langle\vee / \backslash\rangle / \mathrm{R} 23, \mathrm{OC}$

R3

VR3

D

OC
Z^{w} is a UFTI on w-knots! It extends to links and tangles, is well behaved under compositions and cables, and remains computable for tangles. It contains Burau, Gassner, and Cimasoni-Turaev in natural ways, and it contains the MVA though my understanding of the latter is incomplete.

There's 1D in 4D, non-trivial given 2D, and there are ops...
Dream. Z^{w} extends to virtual knots as $Z^{v}: \mathcal{K}^{v} \rightarrow \mathcal{A}^{v}$, with good composition and cabling properties and plenty of computable quotients, more then there are quantum groups and representations thereof. I don't understand quantum groups!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

[^0]: "God created the knots, all else in topology is the work of mortals." Leopold Kronecker (modified)

