Cosmic Coincider	nces and Sever	ies, 2	es, 2 Dror Bar–Natan at the University of Tennessee March 4, 2011, http://www.math.toronto.edu/~drorbn/Talks/Tennessee–1103/				
"Low Algebra" and universal formulae in Lie algebras.			Chern-Simons-Witten theory and Feynman diagrams. $\int_{\mathfrak{g}\text{-connections}} \mathcal{D}A hol_{K}(A) \exp\left[\frac{ik}{4\pi} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)\right] \xrightarrow[\text{Witten}]{}_{\text{Witten}}$				
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Set} \\ \end{array} \end{array} \\ \begin{array}{l} f_{abc} := \langle [X_a, X_c], X_c \rangle \end{array} \end{array} \end{array} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $			$ \longrightarrow \sum_{\substack{D: \text{ Feynman} \\ \text{ diagram}}} W_{\mathfrak{g}}(D) \sum_{\mathcal{F}} \mathcal{E}(D) \longrightarrow \sum_{\substack{D: \text{ Feynman} \\ \text{ diagram}}} D \sum_{\mathcal{F}} \mathcal{E}(D) $				
and then $\gamma \beta$	Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on sufficiently large alternations as on the right						
$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$			Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.				
$\bigvee \frac{\alpha}{W_{\mathfrak{g},R} \circ Z}$ is often interest	Conjecture. (Taylor's theorem) Finite type invariants separate knots.						
$\mathfrak{g} = sl(2) \longrightarrow$	(sketch: to dance in many parties, you need many feet).						
$\mathfrak{g} = sl(N)$ \longrightarrow The HOMFLYPT polynomial Przytycki			$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $				
$\mathfrak{g} = so(N) \longrightarrow$ The Kauffman polynomial			The Miller Institute knot				
 Knots are the wrong objects to study in knot theory! They are not finitely generated and they carry no interesting operations. 			Algebraic Knot Theory				
Knotted Trivalent Graphs			$\overrightarrow{Theorem} (\sim, "High Algebra"). A homomorphic Z is the same as a "Drinfel'd Associator".$				
The $u \rightarrow v \rightarrow w \& p$ Stories explained s			ketched could explain could explain, gaps remain more gaps then explains mystery				
Topology	Combinatorics	Low Algebra	High A	lgebra	Conf. Space Integrals	Theory	Homology
The <u>u</u> sual Knotted Objects (KOs) in 3D — braids, knots, in links, tangles, knotted graphs, etc.	Chord diagrams and Jacobi diagrams, modulo $4T$, STU , IHX , etc.	Finite dimensional metrized Lie algebras, representations, and associated spaces.	The Drinfe of associat	el'd theory ors.	Today's work. Not beautifully written, and some detour-forcing cracks remain.	Perturbative Chern-Simons- Witten theory.	The "original" graph homology.
V Virtual KOs — A Y "algebraic", "not Y Knot drawn on a surface, Y Mod stabilization. S	Arrow diagrams and v-Jacobi diagrams, modulo 6 <i>T</i> and various "directed" <i>STU</i> s and <i>IHX</i> s, etc.	Finite dimensional Lie bi-algebras, representations, and associated spaces.	Likely, qua groups and Etingof-Ka theory of quantizatio bi-algebras	antum 1 the azhdan on of Lie s.	No clue.	No clue.	No clue.
V Ribbon 2D KOs in I V 4D; "flying rings". V Like v, but also v with "overcrossings commute". i	Like v, but also with "tails commute". Only "two in one out" internal vertices.	Finite dimensional co-commutative Lie bi-algebras ($\mathfrak{g} \ltimes \mathfrak{g}^*$) representations, and associated spaces.	The Kashi Vergne-Ale , Torossian convolution groups / a	wara- ekseev- theory of ns on Lie lgebras.	No clue.	Probably related to 4D BF theory.	Studied.
p-Objects	"Acrobat towers" with 2-in many-out vertices.	Poisson structures.	Deformatic quantizatic poisson ma	on on of anifolds.	Configuration space integrals are key, but they don't reduce to counting.	Work of Cattaneo.	Studied. Hyperbolic geometry ?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tennessee-1103/ and at http://www.math.toronto.edu/~drorbn/Talks/Caen-1206/#Colloquium