Abstract. In the first half of my talk I will tell a cute and simple story - how given a knot in \mathbb{R}^{3} one may count all possible "cosmic coincidences" associated with that knot, and how this count, appropriately packaged, becomes an invariant Z with val ues in some space \mathcal{A} of linear combinations of certain trivalent graphs.
In the second half of my talk I will describe (rather sketchily, I'm afraid) a part of the story surrounding Z and \mathcal{A} : How the same Z also comes from quantum field theory, Feynman diagrams, and configuration space integrals. How \mathcal{A} is a space of universa formulas which make sense in every metrized Lie algebra and how specific choices for that Lie algebra correspond to various famed knot invariants. How Z solves a universal topological problem, and how solving for Z is solving some universal Liealgebraic problem. All together, this is the u-story.
In the remaining time I will mention several other Z 's and \mathcal{A} ' and the parallel (yet sometimes interwoven) stories surroundin them - the v-story, and w-story, and perhaps also the p-story Each of these stories is clearly still missing some chapters.

Michelangelo

Disclaimer

We'll concentrate on the beauty and ignore the cracks.
$\langle D, K\rangle_{\pi}:=\binom{$ The signed Stonehenge }{ pairing of D and $K}:$
$D=$

$K=$

The
Gaussian
linking
number

The generating function of all cosmic coincidences:
$Z(K):=\lim _{N \rightarrow \infty} \sum_{3 \text {-valent } D} \frac{\langle D, K\rangle_{\rangle_{N} D} D}{2^{c}!\binom{N}{e}} \cdot\left(\begin{array}{c}\text { framing- } \\ \text { dependent } \\ \text { counter-term }\end{array}\right) \in \mathcal{A}(\circlearrowleft) \frac{\text { D. Thursion }\langle }{}$
N :=\# of stars
c :=\# of chopsticks
e :=\# of edges of D
$\mathcal{A}(\circlearrowleft) \quad$ oriented vertices
:=Span

${ }_{\&} \mathrm{AS}: \bar{Y}+\bar{m}=0$ 人
When deforming, catastrophes occur when:

| A plane moves over an | An intersection line cuts | The Gauss curve slides |
| :--- | :--- | :--- | :--- |
| intersection point - | through the knot | over a star - |
| Solution: Impose IHX, | Solution: Impose STU, | Solution: Multiply by |
| (see below) | (similar argument) | (not shown here) |

Theorem. Modulo Relations, $Z(K)$ is a knot invariant!
The Cast

The IHX Relation

$\Leftrightarrow>$ the red star is your eye.

*
in rough historical order

The Neolithic People
Carl Friedrich Gauss Edward Witten Victor Vassiliev Mikhail Goussarov

Clifford Taubes

Jun Murakami

Tomotada Ohtsuki

