Footnotes

1. I probably mean "a functor from some fixed "structure multi-category" to the multi-category of sets, extended to formal linear combinations".
2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that here $\mathcal{A}(K)$ is Lie; however see the comment by Conant attached to this talk's video page.
3. See my paper [BN1] and my talk/handout/video [BN3].
4. See [BN5] and my talk/handout/video [BN4].
5. Not so old and not quite written up. Yet see [BN2].

References

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld associators, Braid groups and explicit solutions of the Kashiwara Vergne equations, Pub. Math. de L'IHES 112-1 (2010) 143-189, arXiv:arXiv:0903.4067.
[BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the YangBaxter equations, Jornal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
[BN1] D. Bar-Natan, On Associators and the Grothendieck-Teichmüller Group I, Selecta Mathematica, New Series 4 (1998) 183-212.
[BN2] D. Bar-Natan, Algebraic Knot Theory - A Call for Action, web document, 2006, http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html.
[BN3] D. Bar-Natan, Braids and the Grothendieck-Teichmüller Group, talk given in Toronto on January 10, 2011, http://www.math.toronto.edu/~drorbn/Talks/Toronto-110110/.
[BN4] D. Bar-Natan, From the $a x+b$ Lie Algebra to the Alexander Polynomial and Beyond, talk given in Chicago on September 11, 2010, http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/.
[BN5] D. Bar-Natan, Finite Type Invariants of w-Knotted Objects: From Alexander to Kashiwara and Vergne, in preparation, online at http://www.math.toronto.edu/~drorbn/papers/WKO/.
[Dr1,2] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419-1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal($(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991) 829-860.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1-41, arXiv:q-alg/9506005.
[Ha] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249-272.
[Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation.
[Po] M. Polyak, On the Algebra of Arrow Diagrams, Let. Math. Phys. 51 (2000) 275-291.
[Th] D. P. Thurston, The Algebra of Knotted Trivalent Graphs and Turaev's Shadow World, Geometry \& Topology Monographs 4 (2002) 337-362, arXiv:math.GT/0311458.

Plan

1. (8 minutes) The Peter Lee setup for (K, I), "all interesting graded equations arise in this way".
2. (3 minutes) Example: the pure braid group (mention $P v B$, too).
3. (3 minutes) Generalized algebraic structures.
4. (1 minute) Example: quandles.
5. (4 minutes) Example: parenthesized braids and horizontal associators.
6. (6 minutes) Example: KTGs and non-horizontal associators. ("Bracket rise" arises here).
7. (8 minutes) Example: wKO's and the Kashiwara-Vergne equations.
8. (12 minutes) vKO's, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more interesting quotients).
9. (5 minutes) wKO's, uKO's, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

