Facts and Dreams About v-Knots and Etingof-Kazhdan, 2


The w-relations include R234, VR1234, D, Overcrossings Commute


Trivalent w-Tangles.
\(\mathrm{wTT}=\mathrm{PA}\left\langle\begin{array}{c}\mathrm{w}- \\

generators\end{array}\right|\)| $\mathrm{w}-$ |
| :---: | :---: |
| relations |\(\left|\begin{array}{c}unary \mathrm{w}- \\

operations\end{array}\right\rangle=\mathrm{CA}\left\langle$$
\begin{array}{c}\text { same } \\
\mathrm{w} / \mathrm{o} \times\end{array}
$$\right\rangle\)
Theorem. There exists a homomorphic expansion $Z$ for wTT. In particular, $Z$ respects $R 4$ and intertwines annulus and disk unzips:

Forbidden Theorem [EK, Ha, ?]. There exists a homomorphic expansion $Z$ for vTT.
Why Forbidden (to me)?

- Minor statement details may be off.
- No fully written proof.
- I don't understand the proof.


Haviv

- There isn't yet a knot-theoretic view of the proof, like there is in the w-case.

Why Should We Care?
Kazhdan

- A gateway into the forbidden territory of "quantum groups".
- Abstractly more pleasing: We study the things, and not just their representations.
- $\mathcal{A}^{v}$ is sometimes easier than $\mathcal{A}^{u}$ : Alexander, say, arises easily from the 2D Lie algebra ${ }^{4}$.
- Potentially, $\mathcal{A}^{v}$ has many more "internal quotients" than there are Lie bialgebras. What are they and what are the corresponding theories?
- My old ${ }^{5}$ Algebraic Knot Theory dream:
 $\overrightarrow{u n z i p}$

$V \rightarrow \Phi^{\text {1-loop }}$ after $[A T]$. "cut and cap" is well-defined(!) on $\mathcal{K}^{u}$
 Better:

$\Phi \rightarrow V$ after [AET]. In $\mathcal{K}^{\bar{w}}$ allow tubes and strands and tubestrand vertices, allow "punctures", yet allow no "tangles".

 ). $\mathcal{K}^{u}$ (i.e., given $\Phi$, can write a formula for $V$ ). With $T$ any classical tangle, esp. $\square$ or $\square$, consider the "sled"


$$
V \cdot(\Delta \otimes 1)(R)=R^{13} R^{23} V \text { in } \mathcal{A}^{w}\left(\uparrow_{3}\right)
$$


$\mathcal{A}^{v}$ pairs with Lie bialgebras. Let $\mathfrak{g}_{+}$be a Lie bialgebra with basis $X_{a}$, bracket $[\cdot, \cdot]$, cobracket $\delta$, dual $\mathfrak{g}_{-}=\mathfrak{g}_{+}^{\star}$, dual basis $X^{a}$ for $\mathfrak{g}_{-}$, double $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{g}_{-}$, structure constants $\left[X_{a}, X_{b}\right]=\sum b_{a b}^{c} X_{c}$ and co-structure constants $\delta\left(X_{a}\right)=\sum c_{a}^{b c} X_{b} \otimes X_{c}$. Then

$$
\sum_{a, b, c, d, e, f=1}^{\operatorname{dim} \mathfrak{g}} b_{d e}^{c} c_{c}^{b a} X_{a} X^{d} X_{f} \otimes X_{b} X^{f} X^{e} \in \mathcal{U}(\mathfrak{g})^{\otimes 2}
$$

The Polyak-Ohtsuki Description of $\mathcal{A}^{v}[\mathrm{Po}]$.

"God created the knots, all else in topology is the work of mortals."
Leopold Kronecker (modified)


Alekseev-Torossian [AT] (equivalent to Kashiwara-Vergne [KV]) There are elements $F \in \mathrm{TAut}_{2}$ and $a \in \mathfrak{t r}_{1}$ such that

$$
F(x+y)=\log e^{x} e^{y} \quad \text { and } \quad j F=a(x)+a(y)-a\left(\log e^{x} e^{y}\right)
$$

Theorem. That's equivalent to a homomorphic expansion for wTT
The Main Example.

