 haven't lost hope of achieving happiness, one day.

Abstract Generalities. (K, I) : an algebra and an "augmentation ideal" in it. $\hat{K}:=\lim K / I^{m}$ the " I-adic completion". $\operatorname{gr}_{I} K:=\widehat{\bigoplus} I^{m} / I^{m+1}$ has a product μ, especially, $\mu_{11}:\left(C=I / I^{2}\right)^{\otimes 2} \rightarrow$ I^{2} / I^{3}. The "quadratic approximation" $\mathcal{A}_{I}(K):=$ $\widehat{F C} /\left\langle\right.$ ker $\left.\mu_{11}\right\rangle$ of K surjects using μ on gr K.

The Prized Object. A "homomorphic \mathcal{A}-expansion": a homomorphic filterred $Z: K \rightarrow \mathcal{A}$ for which $\operatorname{gr} Z: \operatorname{gr} K \rightarrow \mathcal{A} Z:$ universal finite type invariant, the Kontsevich integral. inverts μ.
Dror's Dream. All interesting graded objects and equations, especially those around quantum groups, arise this way.

Example 2. For $K=\mathbb{Q} P v B_{n}=$ "braids when you look", [Lee] shows that a non-homomorphic Z exists. [BEER]: there is no homomorphic one.

- Has kinds, elements, operations, and maybe constants.
- Must have "the free structure over some generators".
- We always allow formal linear combinations.

All
still works!

Why Prized? Sizes K and shows it "as big" as \mathcal{A}; reduces "topological" questions to quadratic algebra questions; gives ${ }^{6}$ life and meaning to questions in graded algebra; universalizes those more than "universal enveloping algebras" and allows for richer quotients.

Presentation. KTG is generated by ribbon twists and the works! tetrahedron Δ, modulo the relation(s):

Example 3. Quandle: a set K with an op \wedge s.t.

$$
\begin{gathered}
1 \wedge x=1, \quad x \wedge 1=x=x \wedge x \\
(x \wedge y) \wedge z=(x \wedge z) \wedge(y \wedge z) \quad \text { (appetizers) } \quad(\text { main })
\end{gathered}
$$

$\mathcal{A}(K)$ is a graded Leibniz ${ }^{2}$ algebra: Roughly, set $\bar{v}:=(v-1)$ (these generate $I!$), feed $1+\bar{x}, 1+\bar{y}, 1+\bar{z}$ in (main), collect the surviving terms of lowest degree:

$$
(\bar{x} \wedge \bar{y}) \wedge \bar{z}=(\bar{x} \wedge \bar{z}) \wedge \bar{y}+\bar{x} \wedge(\bar{y} \wedge \bar{z})
$$

Example 4. Parenthesized braids make a category with some extra operations. An expansion is the same thing as an A_{n-} associator, and the Grothendieck-Teichmüller story ${ }^{3}$ arises

Claim. With $\Phi:=Z(\Delta)$, the above relation becomes equivalent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras. 5 A $\mathcal{U}(\mathfrak{g})$-Associator:

$$
(A B) C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(B C)
$$

satisfying the "pentagon",
$\Phi 1 \cdot(1 \Delta 1) \Phi \cdot 1 \Phi=(\Delta 11) \Phi \cdot(11 \Delta) \Phi$

$((A B) C) D \longrightarrow(A B)(C D)$

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/

