Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F}=0$, and Why Care?
let $I \subset K$ be an "augmentation ideal"; so $K / I \xrightarrow[\epsilon]{\sim} \mathbb{F}$. Definition. Say that K is quadratic if its associated graded $\operatorname{gr} K=\bigoplus_{p=0}^{\infty} I^{p} / I^{p+1}$ is a quadratic algebra. Alternatively, let $A=q(K)=\left\langle V=I / I^{2}\right\rangle /\left\langle R_{2}=\operatorname{ker}\left(\bar{\mu}_{2}: V \otimes V \rightarrow\right.\right.$ $\left.\left.I^{2} / I^{3}\right)\right\rangle$ be the "quadratic approximation" to $K(q$ is a lovely functor). Then K is quadratic iff the obvious $\mu: A \rightarrow \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if its group ring is, with its augmentation ideal.
The Overall Strategy. Consider the "singularity tower" of (K, I) (here ":" means \otimes_{K} and μ is (always) multiplication):

$$
\cdots I^{: p+1} \xrightarrow{\mu_{p+1}} I^{: p} \xrightarrow{\mu_{p}} I^{: p-1} \longrightarrow \cdots \longrightarrow K
$$

We care as $\operatorname{im}\left(\mu^{p}=\mu_{1} \circ \cdots \circ \mu_{p}\right)=I^{p}$, so $I^{p} / I^{p+1}=$ $\operatorname{im} \mu^{p} / \operatorname{im} \mu^{p+1}$. Hence we ask:

- What's $I^{: p} / \mu\left(I^{: p+1}\right)$? - How injective is this tower? Lemma. $I^{: p} / \mu\left(I^{: p+1}\right) \simeq\left(I / I^{2}\right)^{\otimes p}=V^{\otimes p} ;$ set $\pi: I^{: p} \rightarrow V^{\otimes p}$. Flow Chart.

Proposition 1. The sequence
$\Re_{p}:=\bigoplus_{j=1}^{p-1}\left(I^{: j-1}: \mathfrak{R}_{2}: I^{: p-j-1}\right) \xrightarrow{\partial} I^{: p} \xrightarrow{\mu_{p}} I^{: p-1}$ is exact, where $\mathfrak{R}_{2}:=\operatorname{ker} \mu: I^{2} \rightarrow I$; so (K, I) is " 2 -local". The Free Case. If J is an augmentation ideal in $K=F=$ $\left\langle x_{i}\right\rangle$, define $\psi: F \rightarrow F$ by $x_{i} \mapsto x_{i}+\epsilon\left(x_{i}\right)$. Then $J_{0}:=\psi(J)$ $\left\langle x_{i}\right\rangle$, define $\psi: F \rightarrow F$ by $x_{i} \mapsto x_{i}+\epsilon\left(x_{i}\right)$. Then $J_{0}:=\psi(J)$
is $\{w \in F: \operatorname{deg} w>0\}$. For J_{0} it is easy to check that $\mathfrak{R}_{2}=$ $\Re_{p}=0$, and hence the same is true for every J.
The General Case. If $K=F /\langle M\rangle$ (where M is a vector space
of "moves") and $I \subset K$, then $I=J /\langle M\rangle$ where $J \subset F$. ThenThe X Lemma (inspired by [Hut]).
$I^{: p}=J^{: p} / \sum J^{: j-1}:\langle M\rangle: J^{: p-j}$ and we have
 \mathcal{R}_{2} is simpler than may seem! It's $J^{2} \xrightarrow{\mu_{F}} J \supset M \operatorname{ker}\left(\beta_{1} \circ \alpha_{0}\right) / \operatorname{ker} \alpha_{0} \simeq \operatorname{ker}\left(\beta_{0} \circ \alpha_{1}\right) / \operatorname{ker} \alpha_{1}$.
an "augmentation bimodule" $\left(I \mathfrak{R}_{2}=\right.$ $0=\mathfrak{R}_{2} I$ thus $x r=\epsilon(x) r=r \epsilon(x)=r x$ for $x \in K$ and $r \in \mathfrak{R}_{2}$), and hence $\Re_{2}=\pi_{2}\left(\mu_{F}^{-1} M\right)$.
\Re_{p} is simpler than may seem! In $\Re_{p, j}=I^{: j-1}: \mathfrak{R}_{2}: I^{p p-j-1}$ the I factors may be replaced by $V=I / I^{2}$. Hence

$$
\Re_{p} \simeq \bigoplus_{j=1}^{p-1} V^{\oplus j-1} \otimes \pi_{2}\left(\mu_{F}^{-1} M\right) \otimes V^{\otimes p-j-1}
$$

Claim. $\pi\left(\Re_{p, j}\right)=R_{p, j} ;$ namely,

$$
\pi\left(I^{: j-1}: \Re_{2}: I^{: p-j-1}\right)=V^{\otimes j-1} \otimes R_{2} \otimes V^{\otimes p-j-1}
$$

 $\mathrm{So}^{2} \operatorname{ker}(\mu)=\pi_{p}\left(\mu_{F}^{-1}\left(\operatorname{ker} \pi_{p-1}\right)\right)=\pi_{p}\left(\sum \mu_{F}^{-1}\left(J^{:}:\langle M\rangle: J^{*}\right)\right)=$ If the above diagram is Conway (\asymp) exact, then its two $\sum \pi_{p}\left(J^{i}: \mu_{F}^{-1}\langle M\rangle: J^{i}\right)=\sum I^{i}: \mathfrak{R}_{2}: I^{i}=: \sum_{j=1}^{p-1} \mathfrak{R}_{p, j}$. if $A_{0} \rightarrow B \rightarrow C_{0}$ and $A_{1} \rightarrow B \rightarrow C_{1}$ are exact, then

- In abstract generality, gr K is a simplified version of K and if it is quadratic it is as simple as it may be without being silly. - In some concrete (somewhat generalized) knot theoretic cases, A is a space of "universal Lie algebraic formulas" and the "primary approach" for proving (strong) quadraticity, constructing an appropriate homomorphism $Z: K \rightarrow \hat{A}$, becomes wonderful mathematics:

K	u-Knots and Braids	v-Knots	w-Knots
A	Metrized Lie algebras [BN1] $]$	Lie bialgebras [Hav] Linite dimensional Lie algebras [BN3]	
Z	Associators [Dri, BND]	Etingof-Kazhdan quantization (EK, BN2]	Kashiwara-Vergne- Alekseev-Torossian [KV, AT]

2-Injectivity. A (one-sided infinite) sequence

$$
\cdots \longrightarrow K_{p+1} \xrightarrow{\delta_{p+1}} K_{p} \xrightarrow{\delta_{p}} \cdots \longrightarrow K_{0}=K
$$

is "injective" if for all $p>0$, $\operatorname{ker} \delta_{p}=0$. It is " 2 -injective" if its "1-reduction"

$$
\cdots \longrightarrow \frac{K_{p+1}}{\operatorname{ker} \delta_{p+1}} \xrightarrow{\bar{\delta}_{p+1}} \frac{K_{p}}{\operatorname{ker} \delta_{p}} \xrightarrow{\bar{\delta}_{p}} \frac{K_{p-1}}{\operatorname{ker} \delta_{p-1}} \longrightarrow \cdots
$$

is injective; i.e. if for all $p, \operatorname{ker}\left(\delta_{p} \circ \delta_{p+1}\right)=\operatorname{ker} \delta_{p+1}$. A pair (K, I) is "2-injective" if its singularity tower is 2 -injective.
Proposition 2. If (K, I) is 2-local and 2-injective, it is quadratic.
Proof. Staring at the 1-reduced sequence $\frac{I^{: p p+1}}{\text { ker } \mu_{p+1}} \xrightarrow{\mu_{p+1}} \frac{I^{: p}}{\operatorname{ker} \mu_{p}} \xrightarrow{\mu_{p}} \cdots \longrightarrow K$, get $\frac{I^{p}}{I^{p+1}} \simeq$ $=\frac{I^{p, p} / \operatorname{ker} \mu_{p}}{\mu\left(I^{p+1} / \operatorname{ker} \mu_{p+1}\right)} \simeq \frac{I^{: p}}{\mu\left(I^{p+1}+\operatorname{ker} \mu_{p}\right.}$. But $\frac{I^{: p}}{\mu\left(I^{p p+1}\right)} \simeq\left(I / I^{2}\right)^{\otimes p}$, so the above is $\left(I / I^{2}\right)^{\otimes p} / \sum_{I}\left(I^{j p-1}: \mathfrak{R}_{2}: I^{: p-j-1}\right)$. But that's diagonals have the same "2-injectivity defect". That is,
if $A_{0} \rightarrow B \rightarrow C_{0}$ and $A_{1} \rightarrow B \rightarrow C_{1}$ are exact, then

Proof. $\frac{\operatorname{ker}\left(\beta_{1} \circ \alpha_{0}\right)}{\operatorname{ker} \alpha_{0}} \xrightarrow[\alpha_{0}]{\sim} \operatorname{ker} \beta_{1} \cap \operatorname{im} \alpha_{0}$
 "topological syzygy".
Conclusion. We need to know that (K, I) is "syzygy complete" - that every diagrammatic syzygy is also a topological syzygy, that $\operatorname{ker}(\pi \circ \partial)=\operatorname{ker}(\partial)$.

