The Pure Virtual Braid Group is Quadratic¹

Dror Bar-Natan and Peter Lee in Oregon, August 2011 http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/ foots & refs on PDF version, page 3

Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F} = 0$, and Why Care? let $I \subset K$ be an "augmentation ideal"; so $K/I \xrightarrow{\sim} \mathbb{F}$. gr $K = \bigoplus_{p=0}^{\infty} I^p/I^{p+1}$ is a quadratic algebra. Alternatively,

let $A = q(K) = \langle V = I/I^2 \rangle / \langle R_2 = \ker(\bar{\mu}_2 : V \otimes V) \rightarrow V$ I^2/I^3) be the "quadratic approximation" to K (q is a lovely functor). Then K is quadratic iff the obvious $\mu: A \to \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if its group ring is, with its augmentation ideal.

The Overall Strategy. Consider the "singularity tower" of (K, I) (here ":" means \otimes_K and μ is (always) multiplication):

$$\cdots \ I^{:p+1} \stackrel{\mu_{p+1}}{\longrightarrow} \ I^{:p} \stackrel{\mu_{p}}{\longrightarrow} \ I^{:p-1} \longrightarrow \cdots \longrightarrow K$$

We care as $\operatorname{im}(\mu^p = \mu_1 \circ \cdots \circ \mu_p) = I^p$, so $I^p/I^{p+1} =$ im μ^p / im μ^{p+1} . Hence we ask:

• What's $I^{:p}/\mu(I^{:p+1})$? • How injective is this tower?

Lemma. $I^{:p}/\mu(I^{:p+1}) \simeq (I/I^2)^{\otimes p} = V^{\otimes p}$; set $\pi: I^{:p} \to V^{\otimes p}$.

Flow Chart.

Any Prop (2-local) Prop 2 Quadratic its "1-reduction"

$$K = PvB_n$$
 Thm S Hutchings Criterion

Prop 2-local Prop 2 Quadratic its "1-reduction"

 $V = PvB_n$ its "1-reduction"

 $V = VvB_n$ is injective its injective; i.e.

Proposition 1. The sequence

$$\mathfrak{R}_p := \bigoplus_{i=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \stackrel{\partial}{\longrightarrow} I^{:p} \stackrel{\mu_p}{\longrightarrow} I^{:p-1}$$

is exact, where $\mathfrak{R}_2 := \ker \mu : I^{:2} \to I$; so (K, I) is "2-local". Proof. is exact, where $\Re_2 := \ker \mu : I^{:2} \to I$; so (K,I) is "2-local". The Free Case. If J is an augmentation ideal in $K = F = \begin{cases} F & \text{Proof.} \\ \langle x_i \rangle, \text{ define } \psi : F \to F \text{ by } x_i \mapsto x_i + \epsilon(x_i). \text{ Then } J_0 := \psi(J) \end{cases}$ Staring at the 1-reduced sequence $f(x_i)$ is $f(x_i)$ define $f(x_i)$ and $f(x_i)$ is easy to check that $f(x_i)$ is $f(x_i)$ is easy to check that $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is easy to check that $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is easy to check that $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is easy to check that $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is $f(x_i)$ is $f(x_i)$ in $f(x_i)$ is $f(x_i)$ in $f(x_i)$ in f

The General Case. If $K = F/\langle M \rangle$ (where M is a vector spacethe degree p piece of q(K)). of "moves") and $I \subset K$, then $I = J/\langle M \rangle$ where $J \subset F$. Then The X Lemma (inspired by [Hut]).

 $I^{:p} = J^{:p} / \sum J^{:j-1} : \langle M \rangle : J^{:p-j}$ and we have

$$J^{:p} \xrightarrow{\mu_{F}} J^{:p-1}$$

$$\downarrow \text{onto} \qquad \uparrow^{\pi_{p}} \qquad \downarrow^{\pi_{p-1}} \downarrow \text{onto}$$

$$I^{:p} = J^{:p} / \sum J^{:} : \langle M \rangle : J^{:} \xrightarrow{\mu} I^{:p-1} = J^{:p-1} / \sum J^{:} : \langle M \rangle : J^{:}$$
If the above diagram

 $\sum \pi_{p} \left(J^{:} : \mu_{F}^{-1} \langle M \rangle : J^{:}\right) = \sum I^{:} : \Re_{2} : I^{:} : = : \sum_{j=1}^{p-1} \Re_{p,j}.$ if $A_{0} \to B \to C_{0}$ and $A_{1} \to B \to C_{1}$ are exact, then $A_{1} \to A_{2} \to A_{3}$ an "augmentation bimodule" $A_{2} \to A_{3} \to A_{4}$ and $A_{3} \to A_{4} \to A_{5}$ and $A_{4} \to A_{5} \to A_{5}$ are exact, then $A_{2} \to A_{3} \to A_{4}$ and $A_{3} \to A_{5} \to A_{5}$ are exact, then $A_{2} \to A_{3} \to A_{5} \to A_{5}$ and $A_{3} \to A_{5} \to A_{5}$ are exact, then $A_{2} \to A_{3} \to A_{5} \to A_{5}$ and $A_{3} \to A_{5} \to A_{5} \to A_{5}$ and $A_{4} \to A_{5} \to A_{5} \to A_{5}$ are exact, then $A_{5} \to A_{5} \to A_{5} \to A_{5}$ and $A_{5} \to A_{5} \to A_{5} \to A_{5}$ are exact, then $A_{5} \to A_{5} \to A_{5} \to A_{5}$ and $A_{5} \to A_{5} \to A_{5} \to A_{5}$ are exact, then $A_{5} \to A_{5} \to A_{5} \to A_{5} \to A_{5}$ and $A_{5} \to A_{5} \to A_{5} \to A_{5}$ are exact, then $A_{5} \to A_{5} \to A_{5} \to A_{5} \to A_{5} \to A_{5}$ and $A_{5} \to A_{5} \to A_{5} \to A_{5} \to A_{5} \to A_{5}$ and $A_{5} \to A_{5} \to A_{5$ for $x \in K$ and $r \in \mathfrak{R}_2$), and hence $I^{:2} \xrightarrow{\mu} I = J/\langle M \rangle$ The Hutchings Criterion [Hut]. $\mathfrak{R}_2 = \pi_2(\mu_F^{-1}M).$

 \mathfrak{R}_p is simpler than may seem! In $\mathfrak{R}_{p,j}=I^{:j-1}:\mathfrak{R}_2:I^{:p-j-1}$ the I factors may be replaced by $V=I/I^2$. Hence

$$\mathfrak{R}_p \simeq \bigoplus_{j=1}^{p-1} V^{\oplus j-1} \otimes \pi_2(\mu_F^{-1}M) \otimes V^{\otimes p-j-1}.$$

Claim. $\pi(\mathfrak{R}_{p,j}) = R_{p,j}$; namely,

$$\pi\left(I^{:j-1}:\mathfrak{R}_2:I^{:p-j-1}\right)=V^{\otimes j-1}\otimes R_2\otimes V^{\otimes p-j-1}.$$

• In abstract generality, gr K is a simplified version of K and Definition. Say that K is quadratic if its associated graded if it is quadratic it is as simple as it may be without being silly. • In some concrete (somewhat generalized) knot theoretic cases, A is a space of "universal Lie algebraic formulas" and the "primary approach" for proving (strong) quadraticity, constructing an appropriate homomorphism $Z: K \to \hat{A}$ becomes wonderful mathematics:

	u-Knots and		
K	Braids	v-Knots	w-Knots
	Metrized Lie		Finite dimensional Lie
A	algebras [BN1]	Lie bialgebras [Hav]	algebras [BN3]
		Etingof-Kazhdan	Kashiwara-Vergne-
	Associators	quantization	Alekseev-Torossian
Z	[Dri, BND]	[EK, BN2]	[KV, AT]

2-Injectivity. A (one-sided infinite) sequence

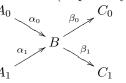
$$\cdots \longrightarrow K_{p+1} \xrightarrow{\delta_{p+1}} K_p \xrightarrow{\delta_p} \cdots \longrightarrow K_0 = K$$

is "injective" if for all p > 0, ker $\delta_p = 0$. It is "2-injective" if

$$\cdots \longrightarrow \frac{K_{p+1}}{\ker \delta_{p+1}} \xrightarrow{\bar{\delta}_{p+1}} \frac{K_p}{\ker \delta_p} \xrightarrow{\bar{\delta}_p} \frac{K_{p-1}}{\ker \delta_{p-1}} \longrightarrow \cdots$$

is injective; i.e. if for all p, $\ker(\delta_p \circ \delta_{p+1}) = \ker \delta_{p+1}$. A pair (K, I) is "2-injective" if its singularity tower is 2-injective.

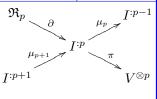
 $\mathfrak{R}_p := \bigoplus_{i=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \xrightarrow{\partial} I^{:p} \xrightarrow{\mu_p} I^{:p-1}$ Proposition 2. If (K,I) is 2-local and 2-injective, it is quadratic.



If the above diagram is Conway (\approx) exact, then its two So² ker(μ) = $\pi_p \left(\mu_F^{-1}(\ker \pi_{p-1}) \right) = \pi_p \left(\sum \mu_F^{-1}(J:\langle M \rangle:J^:) \right) = \text{diagonals have the same "2-injectivity defect"}$. That is

Proof.
$$\frac{\ker(\beta_1 \circ \alpha_0)}{\ker \alpha_0} \xrightarrow{\sim} \ker \beta_1 \cap \operatorname{im} \alpha_0$$

The singularity tower of (K, I) is 2-injective iff on the right, $\ker(\pi \circ$ ∂) = ker(∂). That is, iff every "diagrammatic syzygy" is also a $_{I:p+1}$ "topological syzygy".



We need to know that (K, I) is Conclusion. "syzygy complete" — that every diagrammatic syzygy is also a topological syzygy, that $\ker(\pi \circ \partial) = \ker(\partial)$.